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Conceptualising patterns of spatial flows: Five decades  
of advances in the definition and use of functional regions

Pavel KLAPKA a *, Marián HALÁS a

Abstract
Some fifty years in the development of ideas about the definition and use of functional regions are elaborated 
in this article, as an introduction to this Special Issue of the Moravian Geographical Reports. The conceptual 
basis for functional regions is discussed, initially in relation to region-organising interactions and their 
behavioural foundations. This paper presents an approach to functional regions which presumes that such 
regions objectively exist and that they are based on more or less tangible processes (however, a different view of 
regions is also briefly described). A typology of functional regions is presented and the development of methods 
for finding a definition of functional regions is discussed, as well as a typology for these methods. The final 
part of this article stresses the importance of functional regions in geographical research, and introduces some 
emerging new prospects in the study of functional regions.
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1. Introduction
There is a long tradition in geographic research 

distinguishing between two basic types of regions: formal 
and functional regions (Robinson,  1953; Nystuen and 
Dacey, 1961; Haggett, 1965; Grigg, 1967; Abler et al., 1972; 
Symanski and Newman,  1973). These types differ in the 
character of their region-organising criteria: formal regions 
are based on scalar or vertical data; functional regions are 
based on vector or horizontal data (see Fig. 1). This division 
of data is based on their spatial characteristics. However, it 
should be noted that all geographical data have also their 
temporal dimension: they can be either instant (referring 
to one point in time, such as date of census) or periodical 
(recorded for a certain period). Apart from this division 
of data one should be aware that another role of time in 
geographical research regards the temporal evolution of 
geographic information.

Getting back to a spatial view of geographical data, scalar 
data are related to the concept of a site (Ullman,  1980), 
where importance is given to the vertical or static nature 
of this data, even though their distribution can vary over 
space. Very often this verticality is rather symbolic in human 
geography, where spatial distributions of various criteria 
overlay one another. In physical geography this verticality is 
more tangible: the character of the bedrock and the climate 
influence soil type, hydrological regime and the character 

of the vegetation at a particular site. In contrast vector 
data connect two sites, origin and destination, and thus 
are related to the concept of a situation (Ullman,  1980), 
where importance is given to the horizontal or movement 
nature of these data. These differences are mirrored in 
their distinct forms of spatial organisation and the inner 
structure of their respective types of regions. Papers in this 
Special Issue concentrate specifically on functional regions 
and functional regional taxonomy.

Fig. 1: Foundations of formal and functional regions 
Source: Klapka et al. (2013a)
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In  1967  the proceedings of the  4th general meeting of 
the Commission on Methods of Economic Regionalisation 
of the International Geographical Union, held in Brno, 
Czechoslovakia (September  7–12,  1965), were published 
by the Czechoslovak Academy of Sciences as the book 
“Economic Regionalisation”, and edited by Miroslav 
Macka  (1967). The book includes chapters by renowned 
geographers such as Brian Berry, Torsten Hägerstrand, 
Kazimierz Dziewoński, Hans Bobek and others. Fifty years 
have passed and the issue of functional regions and their 
definition has experienced rapid development, particularly 
in the methods of delineation of functional regions. This 
Special Issue of the Moravian Geographical Reports 
resumes the topic of functional regionalisation raised five 
decades ago and revives its importance, particularly in 
Central Europe, taking into account current knowledge and 
developments in this field.

The significance of reviving interest in the issue of 
functional regions and methods for their delineation is 
in accord with what we call “the second quantitative 
turn” in human geography. Regions objectively exist in 
reality no matter if individual perceptions and aggregated 
individual perceptions can make the concept of region 
somewhat blurry, both in a spatial and a cognitive sense. 
In this respect, the strong assumption that the boundaries 
of regions can be identified in space is not irrelevant at all. 
This is not in opposition to views which see regions as more 
or less temporary social constructions (see for instance, 
Murphy,  1991; Taylor,  1991; Terlouw,  2001). Even in this 
respect, Paasi (1991) sees, as part of their social construction 
(Terlouw, 2001), four shapes of regions (territorial, symbolic, 
institutional and functional), some of them being closer to 
the concept of a region as an objectively existing reality.

Given that the objective existence of regions is accepted 
or taken for granted, it is only logical that objective methods 
for their identification and definition should be applied, 
and that the objective methods lean towards quantitative 
approaches. This does not mean that objective regions are 
eternal entities. Quantitative approaches certainly examine 
the appearance, evolution, pulsation and demise of regions 
in time, but they concentrate on more tangible foundations 
for their existence than postmodern approaches. It is the 
quantitative approach that is discussed further in this paper. 
After decades of challenging the objective virtues of regions 
and concentrating on their social construction foundations, 
inspired for instance by the works of Bhaskar (1998, first 
published in  1979) and Giddens  (1984), the importance 
of quantitative approaches to the identification and 
definition of regions is once again being acknowledged 
(for general consideration and personal confession see 
Johnston,  2008; Haggett,  2008; for the field of regional 
taxonomy see e.g. Casado-Díaz and Coombes, 2011; Farmer 
and Fotheringham, 2011). The behavioural foundations of 
regions, however, as seen by Giddens  (1984) for instance, 
are briefly discussed in the following section.

2. The essence of spatial flows and the context 
of human behaviours

The existence of horizontal spatial flows is conditioned 
by the fact that planet Earth, as the subject matter for the 
discipline of Geography, is significantly non-homogeneous 
in both its physical geographical and human geographical 
traits, and this condition forms the basis for various kinds 
of spatial polarity. Usually this polarity has a tendency 

to precipitate spatial flows. Within the scope of physical 
geography these flows behave according to physical laws, and 
are manifested in the forms of wind streams and water flows. 
Wilson (1969) used the term “social physics” as an analogy 
between physical phenomena and social interaction. Within 
the scope of human geography these flows are induced by 
various manifestations of human behaviours, and this will 
be of interest in the following paragraphs.

In human geography, spatial flows (spatial interactions) 
have the character of aggregated individual horizontal 
flows, mobilities and contacts of persons, goods, finances 
and information. These attributes have their bases in the 
accomplishments and satisfaction of human needs, demands, 
purposes, or “projects”, as they are called in time-geographical 
terminology (see e.g. Lenntorp,  1976; Pred,  1977; 
Timmermans, et al.,  2002). In this respect, Golledge and 
Stimpson (1997) distinguish between two aspects of human 
behaviours: spatial behaviours and behaviours in space. The 
former concept refers to real movements in physical space; 
the latter concept comprises decision-making processes that 
underlie the actual spatial flows. They are goal- or “project”-
oriented, to once again borrow from time-geographical 
terminology. Even though quantitative geography preferably 
works with the manifestations of spatial behaviours, the 
underlying processes should also be borne in mind. Within 
quantitative geography the role of spatial behaviour and 
perceptions is mostly reflected in the studies of movements, 
particularly related to the accessibility and shopping 
behaviour (see e.g. Blommestein, et al., 1980; more recently 
Kwan, 1998; Haynes, et al., 2003; Kwan, et al., 2003; Dijst, 
et al., 2008 to name just a few studies).

Spatial flows can be considered as reflections of both 
intentional and unintentional behaviours by individuals and 
society as an aggregation of individuals. An individual has to 
consider two moments, when speaking of spatial behaviours/
behaviours in space, in order to satisfy psychological, social 
and economic needs (inter alia): the advantage of location 
and gaining maximum benefit from it, and the principle of 
least effort (Zipf,  1949) and optimising movements. Again, 
the heterogeneity of geographical space plays its role and 
the generally underlying geographical trait, distance, more 
precisely the relative distance, assumes crucial significance 
(for this factor, see Tobler,  1970 and his “first rule of 
geography”; Morrill,  1974 and his theory of the spatial 
organisation of society based, besides other factors, on the 
maximisation of spatial interaction; Abler et al.,  1972 on 
the importance of relative space; and Ullmann,  1980 on 
“geography as the discipline of distance”).

The aggregation of individual spatial behaviours and 
behaviours in space produces distinct spatial patterns, as 
some aspects of such behaviours gain importance over others, 
based on the hierarchy of needs and capability, coupling 
and authority constraints in spatio-temporal behaviours 
(see Lenntorp,  1976, Pred,  1977). Examples of situations 
that concern most of society are the residence-workplace 
relationships, residence-school relationships, shopping trips 
and leisure trips. These types of trips are largely responsible 
for the formation of spatial interaction patterns. Attention 
should also be paid to the temporal aspects of the above-
mentioned situations, not only from the point of view of 
their evolution over time, but particularly from the point 
of view of their rhythm or period. Thus movements with 
a daily period of repetition are important for the purposes 
discussed in this paper. Both spatial flows and rhythms of 
human behaviours form recurring and regular behavioural 
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patterns, which result in the spatial organisation of society, 
into the geographical organisation of space (see the classic 
works of Haggett,  1965; Abler et al.,  1972; Morril,  1974). 
The conceptualisation of these patterns is discussed in the 
following section.

3. Functional regions
The first indications of interest in regions as organisational 

structures based on functional linkages occurred in the late 
pre-quantitative geography era (Platt,  1928; Brush,  1953; 
Robinson,  1953; Ullman,  1980, based on the ideas put 
forward by him in the first half of the 1950s). The greater 
attention paid to the patterns of spatial flows is related to the 
rise of quantitative geography that started in the late 1950s/
early 1960s. Nystuen and Dacey (1961), Haggett (1965) and 
later Brown and Holmes (1971), used the term nodal region. 
In this instance, the spatial flows are oriented towards a core, 
a centre or a node, and the concept was inspired by the works 
of Dickinson  (1930), Christaller  (1933), Lösch  (1940) and 
Isard (1956). All these approaches stressed the orientation of 
interaction movements towards a centre, a node.

During the same decade the use of another term occurred: 
functional region, but its lucid and rigorous definition was 
not stated, and sometimes it was used interchangeably with 
nodal region. As examples, consider: Philbrick  (1957:  302) 
speaks of “areal functional organisation”, then operates 
with the concept of nodality; Dziewoński  (1967) quotes 
both terms as individual,  Berry  (1968) speaks of the 
organisational and functional aspect of these regions, though 
he considers nodality and polarisation to be their basis; Abler 
et al. (1972) stress functional relationships within functional 
regions; Morrill  (1970) says in the first edition of his book 
that nodal region is a better term for functional region, 
while Grigg  (1967) suggested that the term functional 
region be preferred to the term nodal region, although 
he saw them as near synonyms. In contrast, Brown and 
Holmes  (1971) differentiated between the two terms. The 
ambiguity between the terms nodal region and functional 
region was discussed later, for instance by Symanski and 
Newman  (1973). Unequivocal definitions for functional 
regions were put forward by Johnston and Rossiter (1981), 
who, in the case of planning regions conceived as functional 
regions, omitted the notion of the necessary orientation of 
interaction movements towards a node.

Based on our own earlier work (Klapka et al., 2013a; Halás 
et al.,  2015) and inspiration drawn from Goodman  (1970), 
Smart  (1974), Bezák  (2000), Karlsson and Olsson  (2006), 
Farmer and Fotheringham (2011), we venture to put forward 
a simple and general concept of a functional region for 
theoretical discussion. In this respect, a functional region 
is seen as an organisational structure based on patterns of 
any relevant horizontal spatial relationships (e.g. vectors, 
interactions, movements, flows, etc.), and the concepts of 
functional regional autonomy and self-containment of a 
region that can be expressed by two interlinked principles: 
the principle of external separation and the principle of 
internal cohesiveness. This means that spatial relationships 
(their number, intensity) are maximised within a functional 
region and minimised across its borders, which ensure a high 
degree of functional regional autonomy (self-containment) 
for each respective functional region. Such a concept of a 
functional region asks for a simple identification criterion of 
a minimum of 50% of incident spatial relationships to occur 
within a region (nevertheless, in practice the percentage is 
usually higher) – see Fig. 2.

Mathematically the self-containment of a region is 
expressed by (A + B) > k(C + D); k ≥ 1 where A and B 
are inner flows, C and D are cross border flows, and k is a 
coefficient setting the level of self-containment.

A finer classification of functional regions can be based 
on two criteria: inner structure and the character of region-
organising relationships. As for the former criterion, 
functional regions reflect a so-called situational context 
(Ullman,  1980), when number, direction and intensity of 
horizontal spatial relationships vary across the space. This 
type of an organisational unity infers that such regions 
usually have a complex and non-homogeneous inner 
structure (unlike formal regions). In this respect, at least five 
theoretical models of functional regions can be distinguished 
(Klapka, et al., 2013a), see Fig. 3:

1.	 a functional region with a random pattern of inner 
spatial relationships;

2.	 a functional region with an oriented ordered pattern of 
inner spatial relationships, characterised by prevailing 
directions of flows;

3.	 a functional region with a channelled ordered pattern 
of inner spatial relationships, characterised by a 
concentration of flows into communication channels;

4.	 a functional region with a circular ordered pattern of 
inner spatial relationships, characterised by circulating 
flows; and

5.	 a functional region with a nodal ordered pattern of inner 
spatial relationships, characterised by a direction of 
flows towards a core (node).

Even though nodal regions are the most frequent instance 
of a functional region, the remaining instances in Figure 3 
are not mere theoretical constructions, but they objectively 
exist. For instance, migration flows along short distances 
within a functional region at a local level, and family 
visits within a particular city zone have rather random 
patterns (see e.g. an earlier comment by Greer-Wooten 
and Gilmour, 1972). Some of the types can be determined 
by physical constraints and barriers such as a mountain 
range, a coastline, a huge river, etc. An important role in the 
spatial distribution of interactions is played by the shape 
and location of barriers. The less frequent type of circular 
flow can occur in this respect, for instance around a large 
lake which is a tourist attraction.

According to the second classification criterion, the 
character of a region-organising relationship, various types 
of movements (travel-to-work, travel-to-school, travel-

Fig. 2: Self-containment of a functional region 
Source: Klapka, et al. (2013a)
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to-services, leisure travels, etc.), their rhythm (e.g. daily, 
weekly) and types of core (e.g. urban, polycentric) are used 
to distinguish between functional regions. Thus functional 
regions based on travel-to-work flows are referred to as 
local labour market areas (originally discussed for example, 
by Goodman,  1970; Smart,  1974), or travel-to-work areas 
(originally discussed for example, by Ball, 1980; Coombes and 
Openshaw, 1982). Functional regions based on flows directly 
to an urban core are referred to as functional urban regions 
(originally discussed for example, by Berry,  1973; Hall and 
Hay, 1980), or, in cases where the flows have a daily rhythm 
as daily urban systems (originally discussed for example, by 
Berry,  1973; Hall,  1974; Coombes et al.,  1979). All of these 
types of regions, as evidenced from the relevant literature, can 
be considered special instances of a general functional region.

Figure 4 shows a graphical expression of the most frequent 
types of specific functional regions, where the basic criterion, 
self-containment, is supplemented by further optional 
characteristics. Thus the functional urban region (Fig.  4a: 
FUR) needs to be organised around an urban core, the daily 
urban system (Fig.  4b: DUS) needs to be defined by daily 
movements and rhythms, and the local labour market area 
(Fig. 4c: LLMA) needs to be based on the interaction between 
workplace and residence.

4. Functional regional taxonomy

4.1. Conceptual framework
Functional regions are products of a functional regional 

taxonomy. A functional regional taxonomy is understood to 
be a set of approaches, methods and techniques used for the 

identification and definition of functional regions, which 
are usually based on the analysis of spatial relationships 
(interaction, movement, flows) between defined segments of 
geographic space. As such it is a part of a traditional and wide-
ranging branch of human geography, i.e. spatial analysis and 
quantitative geography (see for example, Coombes, 2000).

A functional regional taxonomy has to take into account 
three crucial limitations. The first relates to the problem of 
the identification of geographical objects and the relevant 
hierarchical level needed for decisions concerning the choice 
of spatial zones to act as building blocks for a functional 
regional taxonomy. This can be called the principle of a 
basic spatial unit. The second limitation is expressed by 
the continuous character of geographic space and the 
distance separating basic spatial units. Again the first law of 
geography (see above reference to Tobler, 1970) is important 
in this respect. This limitation has advantageous effects in 
the formation of separated functional regions without the 
need to include information on the spatial neighbourhood 
of basic spatial units. The third limitation relates to the 
so-called modifiable areal unit problem (MAUP), which is 
addressed for instance by Openshaw (1984), Fotheringham 
and Wong (1991) and Unwin (1996).

A functional regional taxonomy is in fact an inherent 
part of MAUP (Baumann, et al., 1983; Cörvers, et al., 2009; 
Mitchell and Watts,  2010), as any effort to produce larger 
areas (regions) from a set of arbitrary and modifiable 
objects (basic spatial units) faces a considerable degree of 
spatial uncertainty and spatial bias. MAUP consists of two 
interlinked questions: how many larger areas should there 
be?; and, which means of amalgamating geographical objects 

Fig. 3: Functional regions according to their inner structure 
Source: adjusted according to Klapka, et al. (2013a)

Fig. 4: Functional regions according to optional characteristics. Source: adjusted according to Klapka, et al. (2013a)
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into larger areas should be used? In both cases, there are 
an almost infinite number of choices. The first question is 
known as the scale problem; the second question is known as 
the aggregation or zoning problem.

Two conceptual prerequisites frame the scope of a functional 
regional taxonomy: it is goal-oriented, and it has an exploratory 
rather than confirmatory character. The first prerequisite 
demands that there is a rigorous objective stating what is to 
be reached by a functional regional taxonomy and why. The 
second prerequisite holds that the results of a functional 
regional taxonomy are not known in advance. It should also 
be observed that there is no sole correct methodology for the 
analysis of interaction data, and that different approaches, 
methods and techniques can provide considerably different 
results (Van der Laan and Schalke, 2001; Klapka, et al., 2014).

Generally, the identification and definition of functional 
regions can be achieved through one or both of two interlinked 
tasks that can be viewed as two perspectives on the same 
problem. The first task is to search for similarities in spatial 
relationships across geographical space. The similarity is 
expressed by the intensity of spatial relationships, when 
higher intensity implies higher similarity, i.e. significant 
linkages between geographical objects. The second approach 
(see e.g. Coombes,  2000) is a quest for boundaries across 
geographical space. Retaining the argumentation of this 
paper based on the concepts of spatial non-homogeneity and 
spatial interaction, the boundaries can be conceived as areas 
where few or no spatial relationships occur.

Finally, there is the issue of the contiguity of functional 
regions, i.e. the difference between typological and 
individual functional regional taxonomy. The procedures 
leading to the definition of individual functional regions 
should theoretically comprise a contiguity constraint. Some 
methods, such as the Intramax (see below), comprise such 
a constraint. In contrast, the majority of approaches do not 
include this constraint, since it is the character of a space, 
the role of distance and behavioural constraints that produce 
contiguous typological functional regions, and these can be 
considered to be individual functional regions. To sum up, 
the taxonomic similarity of basic spatial units is closely 
related to the spatial proximity of these units.

4.2 Typology of approaches
Existing typologies of approaches leading to the definition 

of functional regions have been presented by Coombes (2000), 
Van der Laan and Schalke  (2001), Casado-Díaz and 

Coombes (2011), Farmer and Fotheringham (2011), and Klapka 
et al. (2014), among others. Some of the terms in Table 1 have 
been used by the above-mentioned works, but sometimes 
with different meanings (see for example, the definition of 
hierarchical methods by Casado-Díaz and Coombes, 2011). In 
this paper, an attempt to provide a more detailed classification 
of functional regional taxonomic tasks is put forward in order 
to add to this field of study. All approaches come from the 
analysis of an interaction matrix, storing the information on 
contacts (i.e. flows and linkages) between basic spatial units.

Four criteria, each allowing two possibilities, are used 
in order to classify methodological approaches to the 
identification of functional regions (i.e. regional classes). The 
criteria are ranked in descending order from more generic to 
more specific (see Tab. 1).

The first criterion is based on the direction of a regional 
class formation, when either basic spatial units are grouped 
into larger clusters, or the set of basic spatial units is divided 
into smaller subsets. The second criterion distinguishes 
between methods that follow a general clustering principle, 
where a regional class is formed in one stage, and methods 
that are comprised of several stages, all of which can have 
various objectives. The basic difference is that, in the 
former case, once two basic spatial units (or clusters) are 
amalgamated, they can never be dissolved, while in the 
latter case the final clusters are formed after all stages are 
completed and all the rules fulfilled, and it is possible that 
a proto-cluster can be dissolved during the procedure. The 
third criterion distinguishes between tasks when the number 
of final clusters is known in advance (non-hierarchical 
methods) or it is not (hierarchical methods)1. Finally, the 
fourth criterion distinguishes between cases where the 
interaction matrix is interpreted as a graph, and where it is 
conceived as a numerical expression of the dissimilarity of 
respective basic spatial units.

Theoretically, each approach should be classifiable within 
each criterion. It must be admitted that some approaches do 
not exist, for logical reasons, or they are not used for practical 
reasons (they do not provide geographically acceptable results 
or are too demanding for computer processing). A survey of 
the literature shows that several selected approaches have 
been favoured so far. Graph-oriented methods occurred first 
(e.g. Nystuen and Dacey,  1961; Slater,  1976; Holmes and 
Haggett, 1977) as their application is quite simple, without 
the need for robust computation. In principle, they use solid 
or floating thresholds in order to identify significant flows, 

Tab. 1: Classification of approaches to a functional regional taxonomy. Source: authors’ design

1 This criterion should not be confused with a result of functional regional taxonomy, which can be hierarchical (more layers of 
usually nested functional regions) and non-hierarchical (only one layer of functional regions). In this case the terms hierarchical 
and non-hierarchical refer not to the result, but to the form of construction of a regional layer.

Criterion Approach

1. Direction of a regional class formation Agglomerative

Divisive

2. Character of a class-forming procedure Clustering

Rule-based (multistage)

3. Form of a regional class formation Hierarchical

Non-hierarchical

4. Form of an interaction matrix analysis Graph-oriented

Numerical



2016, 24(2)	 MORAVIAN GEOGRAPHICAL REPORTS

7

2016, 24(2): 2–11	 MORAVIAN GEOGRAPHICAL REPORTS

7

which occur on an oriented graph. The significant flows 
can be based for instance on primary linkage, minimum 
directionality linkage, salient linkage, or hierarchical linkage 
(Holmes and Haggett, 1977). These methods often produce 
unsatisfactory results, yielding disordered regional patterns 
which need subjective intervention in order to acquire 
contiguous and separated regional classes. Their strength 
lies in the simple preliminary analysis of a regional system. 
These methods have been used relatively recently, however, 
for example by Van der Laan and Schalke (2001), Karlsson 
and Olsson (2006), Drobne et al. (2010), Halás et al. (2010), 
and Farmer and Fotheringham (2011).

The second group of methods that has been widely used 
is based on numerical and clustering approaches. These 
methods involve the application of general cluster analysis 
on spatial problems using various linkage measures. Brown 
and Holmes  (1971) used the functional distance approach 
based on mean first passage time (MFPT), where the 
interaction between two basic spatial units is taken as the 
measure of similarity in taxonomic space. Keane  (1978) 
and, relatively recently, Cörvers et al.  (2009), have also 
applied the functional distance method. According to 
the number of citations, the most successful approach 
in this group is the Intramax procedure. It was designed 
by Masser and Brown  (1975) and refined by Masser and 
Scheurwater  (1978), in reaction to comments made by 
Hirst  (1977). This method builds upon Ward’s  (1963) 
hierarchical clustering procedure, which is adjusted for 
interaction data. The Intramax approach was applied by Nel 
et al. (2008), Drobne and Bogataj (2012), and Landré (2012) 
relatively recently.

The third group of methods, the so-called rule-based 
procedures, is comprised of the approaches most widely 
used today. The origins of the rule-based approaches can be 
found in the work of Smart (1974). His basic idea was further 
developed in great detail into a complex regionalisation 
algorithm designed by the Centre for Urban and Regional 
Development Studies (CURDS) in Newcastle, UK. Up to 
the present, three variants of the CURDS algorithm have 
been developed (Coombes et al.  1982,  1986; Coombes and 
Bond, 2008; Coombes, 2010). The principle of these methods 
comes from the definition of a set of rules that are applied 
in several stages and determine the results of the analyses. 
The rules are often used iteratively in order to reach or 
approximate an optimal solution. Minor adjustments to the 
algorithms regarding the constraint function were proposed 
by Casado-Díaz  (2000) and Halás et al.  (2015). Apart from 
the above-mentioned works concerning the territory 
of Great Britain, multistage methods were applied in a 
number of mainly European countries: Italy (Sforzi, 1997), 
Slovakia (Bezák,  2000; Halás et al.,  2014), Spain (Casado-
Díaz, 2000), New Zealand (Papps and Newell, 2002; Newell 
and Perry, 2005), Australia (Watts, 2004), Belgium (Persyn 
and Torfs, 2011), Poland (Gruchociak, 2012), and the Czech 
Republic (Klapka et al.,  2014). There are also other types 
of rule-based approaches: for example, a graph theoretical 
multistage approach, differing from the CURDS algorithm, 
has been proposed by Kropp and Schwengler (2016).

Even this smaller number of three groups of methods 
of functional regional taxonomy that were put into 
practice gave rise to discussions concerning two points: a 
comparison of the methods, and criticism of the methods. 
The insufficiencies of the graph theoretical methods have 
been mentioned already. The numerical and clustering 
approaches were criticised for being too heuristic 

(Ball, 1980; Coombes and Openshaw 1982). In contrast, the 
multistage methods faced criticism for being subjective in 
a certain way and using pre-defined arbitrary criteria (e.g. 
Mitchell and Watts, 2010). Halás et al.  (2015) proposed a 
procedure to mitigate the effects of arbitrary choice in the 
CURDS algorithms.

Despite the criticisms, however, the results of different 
methods were often compared. Masser and Scheurwater 
(1980) compared the functional distance method, the 
graph theoretical method iterative proportional fitting 
procedure (IPFP), and the Intramax method. Fischer 
et al. (1993) compared the IPFP and Intramax procedures. 
Watts  (2009,  2013) made comparisons between the results 
of the CURDS algorithm and the Intramax method. Drobne 
et al.  (2010) compared some more sophisticated graph 
theoretical methods with the Intramax approach. Klapka 
et al. (2013b) compared the results of the CURDS algorithm 
with simpler graph theoretical methods based on the 
primary linkage. Landré and H�kansson  (2013) compared 
the results of the Intramax with graph theoretical methods. 
Most works cited in this paragraph reach the conclusion 
that aggregation procedures such as Intramax and the 
CURDS algorithm produce more correct results than graph 
theoretical methods and matrix transformation methods 
(e.g. IPFP). The question of whether to use hierarchical 
aggregation (Intramax) or rule-based aggregation (the 
CURDS algorithm) seems to remain open: it depends in part 
on the objectives of the research, but also, paradoxically, on 
subjective factors due to the preferences of the researcher.

5. Importance of functional regions 
and discovering future prospects

The problem of the definition of functional regions has 
a wide range of implications for the development of both 
geographical theory and practice. As far as the practical 
point of view is concerned, it has long been acknowledged 
by Haggett  (1965) and Dziewoński  (1967) that functional 
regions can serve better as a geographical tool for normative 
use than administrative regions. Functional regions have 
a vital role in fields such as spatial planning, regional 
economics, statistical geography, transport geography, 
etc.; effectively, in all cases where there is a need for some 
kind of spatial units with internal geographical logic in 
order to reduce possible spatial bias. It is considered that 
administrative, political and some statistical divisions do not 
necessarily reflect existing geographical realities, and that 
they may manifest a significant degree of inefficiency (see for 
instance, Coombes, 2010; Casado-Díaz and Coombes, 2011; 
Farmer and Fotheringham, 2011).

The theoretical implications appear to be more inspiring 
for geographers to acknowledge the importance of the study 
of functional regions. Such implications are more complex 
and mutually conditioned and unfolded. Most of them are 
grounded in spatial uncertainty or in spatial bias, which 
is a specific manifestation of the role and property of most 
geographic (spatial) characteristics. In this argument, 
spatial uncertainty is occasioned by the continuous character 
of geographic space and its measurable elements. In the 
most general sense, the above-mentioned MAUP emerges 
again. Every effort to define a system of functional regions 
faces questions concerning the number and composition of 
regional classes. These questions are complicated to solve 
and that is the challenge for future research. The solutions 
to MAUP, however, are strongly dependent on the research 
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objectives used in defining functional regions. Possible 
directions of research can be aimed at the analysis of spatial 
associations, spatial distributions and spatial variability, or 
any combination of such phenomena.

In a more specific sense, spatial uncertainty unfolds from 
a more probabilistic rather than a deterministic concept 
of functional regions, which is again a reflection of the 
continuous character of geographic space. This approach 
concedes that the level of belonging of geographic objects (in 
this case, basic spatial units) to a regional class need not be 
an unambiguous inference. This idea comes from fuzzy set 
theory, where the membership of an object in a set can vary 
from zero to absolute validity. Coombes  (2000) was among 
the first to suggest a more fuzzy approach to the definition 
of functional regions. Feng  (2009) presented a method for 
the assessment of fuzziness in regional systems through the 
adoption of a so-called membership function. This function 
was later improved by Watts (2009, 2013). The adoption of 
the fuzzy set approach to functional regions opens up the 
possibility of identifying overlapping functional regions, 
even though their existence is usually ruled out by the 
principle that a basic spatial unit should belong to just one 
regional class. The issue of overlapping functional regions 
is discussed by Killer and Axhausen  (2011), and the issue 
of the fuzziness of regional systems is discussed further 
by Feria et al.  (2015). The fuzzy set approach, taken more 
generally, can be a cornerstone for the identification of so-
called pulsating functional regions, which can vary in space 
and time and, turning full circle, are again more general 
consequences of spatial uncertainty.

Another future prospect in the study of the definition of 
functional regions is linked to the preceding paragraph and 
it is grounded in the search for an efficient way to reduce 
the risk of spatial uncertainty in the results of functional 
regional taxonomy. It is a characteristic of most procedures 
defining functional regions that after they reach a solution, 
according to set parameters, they terminate. These 
procedures are based on the so-called greedy algorithms. 
There might be a better solution with regard to the total 
self-containment or fuzziness of a regional system, however, 
which has not been identified by any particular method. 
This clearly requires a refinement of the distribution of 
basic spatial units into regional classes.

An emerging field of study in this respect is the application 
of evolutionary or genetic algorithms (clustering techniques) 
drawing inspiration from biology and genetics. Pioneering 
works in functional regional taxonomy were put forward by 
Flórez-Revuelta et al. (2008), Martínez-Bernabeu et al. (2012), 
and their approach was modified by Alonso et al. (2015). These 
heuristic methods generate a number of variant solutions 
(generations) to the large regionalisation problem. They are 
based on evolutionary principles, such as selection, mutation 
and crossover, and optimise a so-called fitness function.

Another way to tackle the issue of refining existing 
solutions to functional regionalisation is the use of non-
hierarchical clustering strategies. Regarding this, new 
prospects are offered by the application of soft clustering 
methods, such as the fuzzy c means (FCM) algorithm, which 
is a soft variant of the frequently used non-hierarchical 
k means algorithm (for general definition and use, see 
for example, Bezdek et al.,  1984, and Yang,  1993). As in 
the preceding case of algorithms based on evolutionary 
computation methods, a crucial role in these methods is 
played by a so-called objective function, which means that 
it should be very well defined and designed. The principle of 

the methods is grounded in the search for a global optimum 
through maximisation (or minimisation – it depends on the 
logic of the clustering algorithm) of the objective function. 
In a functional regional taxonomy this means that basic 
spatial units are iteratively reallocated between regional 
classes until there is no improvement in the value of the 
objective function, and all predefined criteria, such as self-
containment and size, are met.

6. Special Issue on functional regional taxonomy
The present theoretical paper has introduced this Special 

Issue of the Moravian Geographical Reports on functional 
regions and functional regionalisation. It covers a wider 
spectrum of related problems in five papers, presenting 
specific contributions to the field of methodology and use 
of functional regions. Drobne and Lakner discuss the use 
of different objective functions in hierarchical aggregation 
procedures for the definition of functional regions. Martínez-
Bernabeu and Casado-Díaz propose a methodology, based on 
evolutionary computation, to overcome the insufficiencies 
caused by limitations exposed by basic spatial units in 
the construction of functional regions. Erlebach, Tomáš 
and Tonev present the results of three methods to define 
functional meso-regions of the Czech Republic. Klapka, 
Halás, Netrdová and Nosek discuss the suitability of 
functional micro-regions for spatial analysis and present 
a comparison of functional regions and administrative 
regions in this respect. Olsson presents a spatial interaction 
modelling approach, particularly the issue of accessibility 
measures based on the use of distance-friction parameters, 
to the identification of functional regions.
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Abstract
The use of different objective functions in hierarchical aggregation procedures is examined in this paper. 
Specifically, we analyse the use of the original Intramax objective function, the sum-of-flows objective 
function, the sum-of-proportions-to-intra-regional-flows objective function, Smart’s weighted interaction 
index, the first and second CURDS weighted interaction indices, and Tolbert and Killian’s interaction index. 
The results of the functional regionalisation have been evaluated by self-containment statistics, and they 
show that the use of the original Intramax procedure tends to delineate operationally the most persuasive and 
balanced regions that, regarding the intra-regional flows, homogeneously cover the analysed territory. The 
other objective functions give statistically better but operationally less suitable results. Functional regions 
modelled using the original Intramax procedure were compared to the regions at NUTS  2 and NUTS 3 
levels, as well as to administrative units in Slovenia. We conclude that there are some promising directions 
for further research on functional regionalisation using hierarchical aggregation procedures.
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1. Introduction
The concept of the region has been traditionally one 

of the cornerstones of geographic thought. A region 
is a delimitated spatial system and an expression of 
organisational unity that differentiates it from another 
region (Abler et al.,  1972; Gregory et al.,  2009; Klapka 
et al., 2013). A functional region (FR) is a region organized 
by horizontal relations in a space in the form of spatial flows 
or interactions between parts of the region (Ullman, 1980), 
also called basic data units (BDUs)1. FR can be understood 
as a generalized pattern of spatial interactions. It can be 
defined by many different spatial interactions, including 
population flows (commuting to school or work, migration, 
shopping or recreation), traffic and goods flows (traffic 
and passenger flows by land/sea/air), commodity and 
financial flows, information flows (communications and 
newspaper circulation), gas/water/electricity flows (service 
connections), and so forth (Vanhove and Klaassen, 1987). 
In most of the literature, however, functional regions are 
defined by economic interactions. For example, Farmer and 
Fotheringham (2011) and Van der Laan and Schalke (2001) 

define a functional region as a spatially contiguous region 
in which aggregate supply and demand meet, and Karlsson 
and Olsson (2006) define a functional region as a territorial 
area characterised by a high frequency of intra-regional 
economic interactions (such as intra-regional trade in 
goods and services, labour commuting, and household 
shopping). Among different economic interactions, the 
daily interactions in the labour market are considered 
a good relative measure for the cohesion of a functional 
region (Ball, 1980; Cörvers et al., 2009; OECD, 2002). In 
this context, the basic characteristic of a functional region 
is the integrated labour market, in which intra-regional 
labour commuting, intra-regional job search, and search for 
labour demand are much more intensive than among the 
inter-regional counterparts (Karlsson and Olsson,  2006; 
Van der Laan and Schalke,  2001). Consequently, self-
containment is the crucial characteristic of a functional 
region (Halás et al., 2015).

Several procedures for the delimitation of functional 
regions have been suggested (e.g. Coombes et al.,  1986; 
Farmer, Fotheringham, 2011; Flórez-Revuelta et al., 2008; 
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2 In this paper, the term “system of hierarchical FRs” or, in short, “system of FRs”, denotes delimitation of the analysed territory 
into FRs at each hierarchical level, but the term “set of systems of hierarchical FRs” or, in short, “set of systems of FRs” or “set 
of FRs”, denotes all of the systems of hierarchical FRs modelled by an individual objective function.

3 The NUTS (Nomenclature of Territorial Units for Statistics) classification is a hierarchical system for dividing up the economic 
territory of the EU for the purpose of: (a) the collection, development and harmonisation of EU regional statistics; (b) socio-
economic analyses of the regions; and (c) framing of EU regional policies (EC, 2003; 2007). In Slovenia, there is only one region 
at NUTS 0 or NUTS 1 level (the whole state), there are two regions at NUTS 2 level and 12 regions at NUTS 3 level. Below 
the NUTS levels, there are two LAU (Local Administrative Units) levels in Slovenia: the LAU 1 level defines 58 administrative 
units; and for the LAU 2 level 212 municipalities are defined in 2016.

4 The Intramax procedure is implemented in Flowmap, which is a software package dedicated to analysing and displaying 
interaction or flow data developed at the Faculty of Geosciences of the Utrecht University in the Netherlands (De Jong and Van 
der Vaart, 2013).

Kim et al.,  2015; Masser and Brown,  1975; Slater,  1981). 
Farmer and Fotheringham  (2011) identified three 
general classes of functional regionalisation procedures: 
hierarchical aggregation, multistage aggregation, and 
central place aggregation. Regardless of the approach, 
the aim of regionalisation procedures is to define as many 
functional regions as possible, subject to certain statistical 
constraints that ensure that the regions remain statistically 
and operationally valid (Casado-Diaz and Coombes, 2011).

In this paper, we analyse systems of hierarchical FRs 
modelled by the hierarchical aggregation procedure used 
in the original Intramax objective function (Masser and 
Brown,  1975,  1977) and six other objective functions. 
Seven sets of systems of hierarchical FRs2 are analysed by 
well-known self-containment indicators (Goodman,  1970; 
Smart, 1974; Van der Laan and Schalke, 2001) and by the 
statistics suggested in this paper. The selected results of 
the hierarchical functional regionalisation are compared to 
regions at NUTS 2 and NUTS 3 levels and to administrative 
units (AUs) at LAU 1 level in Slovenia3.

This paper is organised as follows. In section  2, we 
discuss the development and implementation of the 
Intramax method. In section 3, we introduce a methodology 
for modelling and evaluating seven sets of systems of 
hierarchical FRs in Slovenia, and for comparing the 
selected systems of FRs to official regions at NUTS 2 and 
NUTS 3 levels, as well as to AUs in Slovenia. The results 
are presented and discussed in section 4. Finally, section 5 
concludes this topic of using different objective functions in 
the hierarchical aggregation procedure and suggests future 
research directions.

2. Development and implementation of the 
Intramax method

The Intramax method was developed by Masser and 
Brown  (1975) for the purpose of analysing the structure 
of flows in a square interaction matrix (Brown and 
Pitfield,  1990). Masser and Brown  (1977) emphasised 
two areas of the application of the Intramax procedure: 
the first of these was seen in dealing with the multi-level 
specification problem and with the association issue of data 
set reduction; and the second in functional regionalisation 
procedures. An example of the first application is the 
partitioning of a large interaction matrix into a number 
of spatially identifiable subsystems: “within each of which 
there is observed to be a high level of flows but between 
which flows are small and links are weak” (Brown and 
Pitfield,  1990:  60). Such principles are further discussed 
in Masser and Scheurwater (1978,  1980). The Intramax 
procedure was also suggested as a method of functional 
regionalisation (Masser and Brown, 1975). The results of 
such a regionalisation process are functional regions.

According to Masser and Brown (1975: 510): “… [in each 
aggregation step, the Intramax procedure seeks] to maximise 
the proportion of the total interaction which takes place 
within the aggregations of basic data units that form the 
diagonal elements of the matrix, and thereby to minimise 
the proportion of cross-boundary movements in the system 
as a whole”. The authors reported, however, that the 
Intramax is a heuristic procedure which does not guarantee 
a global optimal solution to the partitioning problem (where 
maximum interaction flows would stay in the regions 
and less would cross the region’s borders (Masser and 
Brown, 1977).

The incapability of the Intramax procedure to achieve 
a global optimal solution is mostly the consequence of the 
irreversibility of the aggregated BDUs/FRs (BDUs that 
are once aggregated in FR cannot be disaggregated any 
more). As reported many times (e.g. Alvanides et al., 2000; 
Casado-Diaz and Coombes, 2011; Coombes et al., 1986), the 
irreversibility of the aggregated BDUs/FRs is one of the 
most important shortcomings of the Intramax procedure, 
and a second problem is the indeterminacy of the number 
of FRs.

In its relative simplicity and its implementation in 
publicly available software4, however, one sees the reason 
that the Intramax method has been used so many times to 
analyse FRs – of so many different kinds of interactions at 
very different levels of consideration, for example: labour 
market area delineation (Masser and Scheurwater,  1980; 
Feldman et al.,  2005; Watts,  2009; Landré,  2012; Landré 
and Håkansson,  2013; Koo,  2012); housing market area 
delineation (Goetgeluk and de Jong,  2007; Brown and 
Hincks, 2008; Jaegal, 2013); commodity market delineation 
(Brown and Pitfield,  1990); world trade block delineation 
(Poon,  1997; Kohl and Brouver, 2014); functional 
economic region delineation (Mitchell et al.,  2007,  2013; 
Mitchell and Stimson,  2010; Mitchell and Watts,  2010); 
telecommunication analysis (Fischer et al.,  1993); to 
identify possible administrative or statistical regions (Nel 
et al., 2008; Drobne and Bogataj, 2012a, 2012b); transport 
regions (Krygsman et al., 2009); in the (allocation) analysis 
of services (Drobne and Bogataj, 2014, 2015), and so forth.

In the Intramax procedure, which is a modified version 
of Ward’s  (1963) hierarchical aggregation procedure, 
two spatial BDUs that show the most intensive relative 
interaction (in terms of both of the flows) are joined 
together and stay fused for the remainder of the aggregation 
process, which continues until all BDUs are fused. Here, 
we consider interaction flows as entries in the interaction 
matrix T = [tij], where tij ≥ 0 is an observed value of the 
cell entry in the i-th row and the j-th column, namely the 
interaction flow from BDUi (origin i) to BDUj (destination 
j). So, the Intramax analysis is a stepwise analysis. In each 
step of the aggregation (hereinafter “aggregation step” or 
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simply “step”), two BDUs/FRs5, whose interaction gives the 
highest value of the objective function, are grouped together, 
and the interaction between them becomes the internal (or 
intrazonal) interaction for the resulting FR. This new FR 
now takes the place of the two parent BDUs/FRs in the next 
step of the analysis. Thus, with N basic data units, all BDUs 
are grouped together into one FR after N − 1 steps and all 
interactions become intrazonal (Brown and Pitfield, 1990; 
Masser and Brown,  1975; Masser and Scheurwater,  1980; 
Nel et al.,  2008). The procedure, as well as the results of 
the hierarchical aggregation, can be presented in a tree 
structure of a dendrogram.

In their first paper on the Intramax procedure, Masser and 
Brown (1975) specified the objective function as the difference 
between the observed values, tij, and expected values, tij

*:

(1)

where expected value tij
* was calculated similarly to the 

expected frequency in the i-th row and the j-th column in a 
contingency table for the Chi-square test using the sum of 
the i-th row, ri = ∑ j tij, the sum of the j-th column, cj = ∑i tij, 
and the sum of all elements of matrix T, t = ∑ i, j tij:

(2)

Note that when the objective function is defined as (1), 
matrix T should be standardised by dividing T by t, so that 
T' = [t'ij], where ∑ i, j t'ij = 16. Masser and Brown  (1975) 
applied the contiguity constraint, γij, to restrict the search 
only for contiguous BDUs/FRs: γij = 1 when BDUi / FRi 
and BDUj / FRj are contiguous, and γij = 0 otherwise. They 
analysed the use of the objective function  (1) using the 
commute-to-work data for Merseyside, England, and noted 
that, in practise, little or no difference may be expected in 
the results obtained with or without contiguity constraints 
and that the procedure would tend to favour small BDUs/
FRs (in the first place, small BDUs/FRs are aggregated, 
then large ones).

Following Tyree’s findings (1973), Hirst (1977) noted that 
Masser and Brown  (1975) took insufficient account of the 
influence that the row totals, ri, and column totals, cj, in 
T = [tij] had on the residual values, tij − tij

*, that appeared 
in the objective function (1). The difference between the 
observed and expected values will tend to increase for cells 
(interactions) in those rows and columns with large sums 
(large outflows from BDUs/FRs and large inflows to BDUs/
FRs). Since the objective function is recalculated after each 
step in the grouping procedure, this bias will be cumulative. 
Using the methodological solutions for arbitrary origin-
destination distribution as defined by Goodman  (1963), 
Hirst (1977) suggested that the effects of unequal marginal 
distribution could be overcome by reformulating the objective 
function in the revised version by dividing the difference 
tij − tij

* by an expected value tij
*, with tij

* corrected for tij = 0 
in T. Consequently Masser and Brown revised the objective 
function (Masser and Brown, 1977) as follows:

(3)

The entries in the objective function  (3) are not 
necessarily standardised. Hirst  (1997) tested function (3) 
using hypothetical data. He noted that using the objective 
function  (3) in the Intramax procedure would still tend to 
favour groupings of smaller BDUs/FRs before larger ones 
(because of the differences between the values obtained for 
small opposed to large BDUs/FRs).

Masser and Scheurwater  (1978,  1980) first applied the 
revised version of the objective function  (3) to real data, 
specifically the migration data on four contiguous zones 
within a larger dataset in Greater London, the migration 
data on forty regions from the Netherlands, and the labour 
commuting data for Merseyside that were used in the earlier 
paper on Intramax analysis (Masser and Brown, 1975). They 
concluded: 

a.	 that the Intramax procedure “explicitly identifies regions 
that have more (direct) interaction with each other than 
with other areas at each stage of the grouping process” 
(Masser and Scheurwater, 1980: 1361); 

b.	 that “the dendrogram obtained by the Intramax 
procedure has a well-developed tree structure in which 
basic data units combine to form broadly similar-sized 
clusters within the grouping process” (Masser and 
Scheurwater, 1978: 161); 

c.	 that “stronger connections would appear between pairs 
of smaller zones containing a relatively low proportion of 
intrazonal interaction than between pairs of larger zones 
containing a relatively high proportion of intrazonal 
interaction, and that all other things being equal, the 
former would tend to fuse together before the latter” 
(Masser and Scheurwater, 1980: 1380); 

d.	 that “the bias noted by Hirst  (1977), far from being a 
disadvantage, is in fact a positive advantage in that 
it is a reflection of the inherent characteristics of the 
structure of spatial interaction in the matrix” (Masser 
and Scheurwater, 1980: 1380); and 

e.	 that the Intramax procedure might be readily applied to 
large data sets and might be adapted easily to deal with 
large, sparse matrices (Masser and Brown, 1977; Masser 
and Scheurwater, 1980).

Brown and Pitfield  (1990) noted that the part that was 
subtracted in (3) was a constant and might thus be ignored. 
So, the objective function  (3) can be re-expressed more 
simply as follows (Brown and Pitfield, 1990):

(4)

The objective function  (4) is referred to as an original 
objective function of the Intramax procedure. The entries 
in (4) are not necessarily standardised.

Some recent methodological studies on using Intramax 
for functional regionalisation are discussed in the following 

5 Notation on BDUs/FRs: In the aggregation procedure, two BDUs, which are fused first, form a first FR. Thus, in the second 
step of the aggregation, two BDUs or one BDU and one FR can be fused; in the third step, two BDUs or one BDU and one FR or 
two FRs can be fused; and so on, until all BDUs are aggregated into FRs. From this step, from which no singleton region exists, 
small FRs are aggregated into larger ones.

6 The results of the objective function (1) are dependent on the standardisation, because a proportional change of elements in the 
interaction matrix T would not result in the same results as T'.

housing market area delineation (Goetgeluk and de Jong, 2007; Brown and Hincks, 2008; Jaegal, 2013); 
commodity market delineation (Brown and Pitfield, 1990); world trade block delineation (Poon, 1997; Kohl and 
Brouver, 2014); functional economic region delineation (Mitchell et al., 2007, 2013; Mitchell and Stimson, 
2010; Mitchell and Watts, 2010); telecommunication analysis (Fischer et al., 1993); to identify possible 
administrative or statistical regions (Nel et al., 2008; Drobne and Bogataj, 2012a, 2012b); transport regions 
(Krygsman et al., 2009); in the (allocation) analysis of services (Drobne and Bogataj, 2014, 2015), and so forth. 

In the Intramax procedure, which is a modified version of Ward’s (1963) hierarchical aggregation procedure, 
two spatial BDUs that show the most intensive relative interaction (in terms of both of the flows) are joined 
together and stay fused for the remainder of the aggregation process, which continues until all BDUs are fused. 
Here, we consider interaction flows as entries in the interaction matrix  = , where  ≥ 0 is an observed 
value of the cell entry in the -th row and the -th column, namely the interaction flow from   (origin ) to 
 (destination ). So, the Intramax analysis is a stepwise analysis. In each step of the aggregation 
(hereinafter “aggregation step” or simply “step”), two BDUs/FRs5, whose interaction gives the highest value of 
the objective function, are grouped together, and the interaction between them becomes the internal (or 
intrazonal) interaction for the resulting FR. This new FR now takes the place of the two parent BDUs/FRs in the 
next step of the analysis. Thus, with  basic data units, all BDUs are grouped together into one FR after  − 1
steps and all interactions become intrazonal (Brown and Pitfield, 1990; Masser and Brown, 1975; Masser and 
Scheurwater, 1980; Nel et al., 2008). The procedure, as well as the results of the hierarchical aggregation, can 
be presented in a tree structure of a dendrogram. 

In their first paper on the Intramax procedure, Masser and Brown (1975) specified the objective function as the 
difference between the observed values, , and expected values, 

∗ :  

 =  − 
∗  +  − 

∗ 
					max


																																													 (1)

 
where expected value 

∗  was calculated similarly to the expected frequency in the -th row and the -th column 
in a contingency table for the Chi-square test using the sum of the -th row,  = ∑  , the sum of the -th column, 
 = ∑  , and the sum of all elements of matrix ,  = ∑  : 


∗ = 

 (2)

 
Note that when the objective function is defined as (1), matrix  should be standardized by dividing  by , so 
that  = 

 , where ∑ 
 =	16. Masser and Brown (1975) applied the contiguity constraint, , to restrict 

the search only for contiguous BDUs/FRs:  = 1 when  and  are contiguous, and  = 0
otherwise. They analysed the use of the objective function (1) using the commute-to-work data for Merseyside, 
England, and noted that, in practise, little or no difference may be expected in the results obtained with or 
without contiguity constraints and that the procedure would tend to favour small BDUs/FRs (in the first place, 
small BDUs/FRs are aggregated, then large ones). 

Following Tyree’s findings (1973), Hirst (1977) noted that Masser and Brown (1975) took insufficient account 
of the influence that the row totals, , and column totals, , in 	 =  had on the residual values,  − 

∗ , 
that appeared in the objective function (1). The difference between the observed and expected values will tend 
to increase for cells (interactions) in those rows and columns with large sums (large outflows from BDUs/FRs 
and large inflows to BDUs/FRs). Since the objective function is recalculated after each step in the grouping 
procedure, this bias will be cumulative. Using the methodological solutions for arbitrary origin-destination 
distribution as defined by Goodman (1963), Hirst (1977) suggested that the effects of unequal marginal 
distribution could be overcome by reformulating the objective function in the revised version by dividing the 

                                                 
5 Notation on BDUs/FRs: In the aggregation procedure, two BDUs, which are fused first, form a first FR. Thus, in the second 

step of the aggregation, two BDUs or one BDU and one FR can be fused; in the third step, two BDUs or one BDU and one 
FR or two FRs can be fused; and so on, until all BDUs are aggregated into FRs. From this step, from which no singleton 
region exists, small FRs are aggregated into larger ones. 

6 The results of the objective function (1) are dependent on the standardization, because a proportional change of elements in 
the interaction matrix  would not result in the same results as . 

housing market area delineation (Goetgeluk and de Jong, 2007; Brown and Hincks, 2008; Jaegal, 2013); 
commodity market delineation (Brown and Pitfield, 1990); world trade block delineation (Poon, 1997; Kohl and 
Brouver, 2014); functional economic region delineation (Mitchell et al., 2007, 2013; Mitchell and Stimson, 
2010; Mitchell and Watts, 2010); telecommunication analysis (Fischer et al., 1993); to identify possible 
administrative or statistical regions (Nel et al., 2008; Drobne and Bogataj, 2012a, 2012b); transport regions 
(Krygsman et al., 2009); in the (allocation) analysis of services (Drobne and Bogataj, 2014, 2015), and so forth. 

In the Intramax procedure, which is a modified version of Ward’s (1963) hierarchical aggregation procedure, 
two spatial BDUs that show the most intensive relative interaction (in terms of both of the flows) are joined 
together and stay fused for the remainder of the aggregation process, which continues until all BDUs are fused. 
Here, we consider interaction flows as entries in the interaction matrix  = , where  ≥ 0 is an observed 
value of the cell entry in the -th row and the -th column, namely the interaction flow from   (origin ) to 
 (destination ). So, the Intramax analysis is a stepwise analysis. In each step of the aggregation 
(hereinafter “aggregation step” or simply “step”), two BDUs/FRs5, whose interaction gives the highest value of 
the objective function, are grouped together, and the interaction between them becomes the internal (or 
intrazonal) interaction for the resulting FR. This new FR now takes the place of the two parent BDUs/FRs in the 
next step of the analysis. Thus, with  basic data units, all BDUs are grouped together into one FR after  − 1
steps and all interactions become intrazonal (Brown and Pitfield, 1990; Masser and Brown, 1975; Masser and 
Scheurwater, 1980; Nel et al., 2008). The procedure, as well as the results of the hierarchical aggregation, can 
be presented in a tree structure of a dendrogram. 

In their first paper on the Intramax procedure, Masser and Brown (1975) specified the objective function as the 
difference between the observed values, , and expected values, 

∗ :  

 =  − 
∗  +  − 

∗ 
					max


																																													 (1)

 
where expected value 

∗  was calculated similarly to the expected frequency in the -th row and the -th column 
in a contingency table for the Chi-square test using the sum of the -th row,  = ∑  , the sum of the -th column, 
 = ∑  , and the sum of all elements of matrix ,  = ∑  : 


∗ = 

 (2)

 
Note that when the objective function is defined as (1), matrix  should be standardized by dividing  by , so 
that  = 

 , where ∑ 
 =	16. Masser and Brown (1975) applied the contiguity constraint, , to restrict 

the search only for contiguous BDUs/FRs:  = 1 when  and  are contiguous, and  = 0
otherwise. They analysed the use of the objective function (1) using the commute-to-work data for Merseyside, 
England, and noted that, in practise, little or no difference may be expected in the results obtained with or 
without contiguity constraints and that the procedure would tend to favour small BDUs/FRs (in the first place, 
small BDUs/FRs are aggregated, then large ones). 

Following Tyree’s findings (1973), Hirst (1977) noted that Masser and Brown (1975) took insufficient account 
of the influence that the row totals, , and column totals, , in 	 =  had on the residual values,  − 

∗ , 
that appeared in the objective function (1). The difference between the observed and expected values will tend 
to increase for cells (interactions) in those rows and columns with large sums (large outflows from BDUs/FRs 
and large inflows to BDUs/FRs). Since the objective function is recalculated after each step in the grouping 
procedure, this bias will be cumulative. Using the methodological solutions for arbitrary origin-destination 
distribution as defined by Goodman (1963), Hirst (1977) suggested that the effects of unequal marginal 
distribution could be overcome by reformulating the objective function in the revised version by dividing the 

                                                 
5 Notation on BDUs/FRs: In the aggregation procedure, two BDUs, which are fused first, form a first FR. Thus, in the second 

step of the aggregation, two BDUs or one BDU and one FR can be fused; in the third step, two BDUs or one BDU and one 
FR or two FRs can be fused; and so on, until all BDUs are aggregated into FRs. From this step, from which no singleton 
region exists, small FRs are aggregated into larger ones. 

6 The results of the objective function (1) are dependent on the standardization, because a proportional change of elements in 
the interaction matrix  would not result in the same results as . 

difference  − ∗  by an expected value ∗ , with ∗  corrected for  = 0 in . Consequently Masser and 
Brown revised the objective function (Masser and Brown, 1977) as follows: 

 =
 − ∗ 

∗
+  − 

∗ 
∗

(3)

The entries in the objective function (3) are not necessarily standardized. Hirst (1997) tested function (3) using 
hypothetical data. He noted that using the objective function (3) in the Intramax procedure would still tend to 
favour groupings of smaller BDUs/FRs before larger ones (because of the differences between the values 
obtained for small opposed to large BDUs/FRs).  

Masser and Scheurwater (1978, 1980) first applied the revised version of the objective function (3) to real data, 
specifically the migration data on four contiguous zones within a larger dataset in Greater London, the migration 
data on forty regions from the Netherlands, and the labour commuting data for Merseyside that were used in the 
earlier paper on Intramax analysis (Masser and Brown, 1975). They concluded: (a) that the Intramax procedure 
“explicitly identifies regions that have more (direct) interaction with each other than with other areas at each 
stage of the grouping process” (Masser and Scheurwater, 1980: 1361); (b) that “the dendrogram obtained by the 
Intramax procedure has a well-developed tree structure in which basic data units combine to form broadly 
similar-sized clusters within the grouping process” (Masser and Scheurwater, 1978: 161); (c) that “stronger 
connections would appear between pairs of smaller zones containing a relatively low proportion of intrazonal 
interaction than between pairs of larger zones containing a relatively high proportion of intrazonal interaction, 
and that all other things being equal, the former would tend to fuse together before the latter” (Masser and 
Scheurwater, 1980: 1380); (d) that “the bias noted by Hirst [1977], far from being a disadvantage, is in fact a 
positive advantage in that it is a reflection of the inherent characteristics of the structure of spatial interaction in 
the matrix” (Masser and Scheurwater, 1980: 1380); and (e) that the Intramax procedure might be readily applied 
to large data sets and might be adapted easily to deal with large, sparse matrices (Masser and Brown, 1977; 
Masser and Scheurwater, 1980). 

Brown and Pitfield (1990) noted that the part that was subtracted in (3) was a constant and might thus be ignored. 
So, the objective function (3) can be re-expressed more simply as follows (Brown and Pitfield, 1990): 

 =

∗
+ ∗ (4)

The objective function (4) is referred to as an original objective function of the Intramax procedure. The entries 
in (4) are not necessarily standardized. 

Some recent methodological studies on using Intramax for functional regionalization are discussed in the 
following studies. Alvanides et al. (2000) analysed a set of systems of hierarchical FRs generated by the 
Intramax procedure and a set of systems of FRs modelled by ZDeSi (zone design system for interaction data; 
Openshaw and Rao, 1995; Openshaw and Alvanides, 1999) for 402 local authority districts in England and 
Wales using 1991 census data for labour commuting. The comparison of intra-regional flows showed the 
superiority of the ZDeSi model compared to the Intramax approach: the proportions of the intra-regional flows 
were higher for ZDeSi for all systems of FRs (more for systems of small FRs and less for systems of large FRs). 
It was reported also that it was evident from the results that “the Intramax procedure gets trapped in local 
optima, producing low scores and fragmented regions” (Alvanides et al., 2000: 127). 

Watts (2009) evaluated hierarchical versus rule-based techniques of modelling FRs, namely the Intramax 
technique and the modified version of Coombes’ updated algorithm (Coombes and Bond, 2008; Coombes, 
2010), using the principles of fuzzy set theory (Feng, 2009), to explore the local properties of the two solutions. 
The application was carried out for 1365 Australian statistical local areas and labour commuting data. He 
reported that both approaches to grouping had strong, but not robust, local optimisation properties (Watts, 
2009). The robustness was analysed in relation to self-containment as defined by Smart (1974) and Van der 
Laan and Schalke (2001). Watts reported that “the low minimum rate of closure [of the Intramax method] 
underlines the point, however, that the grouping criterion under Intramax is quite different than those criteria 
characterising the Coombes algorithm. The number of groups in the final solution is more readily controlled 
under the Intramax technique, since the stopping rule can easily be adjusted to achieve a given form of final 
solution, which could be based on a minimum closure requirement, rather than the aggregate intrazonal flow. 
There may be limits as to the desirable rates of closure across groups. Otherwise convergence may be achieved 
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The entries in the objective function (3) are not necessarily standardized. Hirst (1997) tested function (3) using 
hypothetical data. He noted that using the objective function (3) in the Intramax procedure would still tend to 
favour groupings of smaller BDUs/FRs before larger ones (because of the differences between the values 
obtained for small opposed to large BDUs/FRs).  

Masser and Scheurwater (1978, 1980) first applied the revised version of the objective function (3) to real data, 
specifically the migration data on four contiguous zones within a larger dataset in Greater London, the migration 
data on forty regions from the Netherlands, and the labour commuting data for Merseyside that were used in the 
earlier paper on Intramax analysis (Masser and Brown, 1975). They concluded: (a) that the Intramax procedure 
“explicitly identifies regions that have more (direct) interaction with each other than with other areas at each 
stage of the grouping process” (Masser and Scheurwater, 1980: 1361); (b) that “the dendrogram obtained by the 
Intramax procedure has a well-developed tree structure in which basic data units combine to form broadly 
similar-sized clusters within the grouping process” (Masser and Scheurwater, 1978: 161); (c) that “stronger 
connections would appear between pairs of smaller zones containing a relatively low proportion of intrazonal 
interaction than between pairs of larger zones containing a relatively high proportion of intrazonal interaction, 
and that all other things being equal, the former would tend to fuse together before the latter” (Masser and 
Scheurwater, 1980: 1380); (d) that “the bias noted by Hirst [1977], far from being a disadvantage, is in fact a 
positive advantage in that it is a reflection of the inherent characteristics of the structure of spatial interaction in 
the matrix” (Masser and Scheurwater, 1980: 1380); and (e) that the Intramax procedure might be readily applied 
to large data sets and might be adapted easily to deal with large, sparse matrices (Masser and Brown, 1977; 
Masser and Scheurwater, 1980). 

Brown and Pitfield (1990) noted that the part that was subtracted in (3) was a constant and might thus be ignored. 
So, the objective function (3) can be re-expressed more simply as follows (Brown and Pitfield, 1990): 
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∗
+ ∗ (4)

The objective function (4) is referred to as an original objective function of the Intramax procedure. The entries 
in (4) are not necessarily standardized. 

Some recent methodological studies on using Intramax for functional regionalization are discussed in the 
following studies. Alvanides et al. (2000) analysed a set of systems of hierarchical FRs generated by the 
Intramax procedure and a set of systems of FRs modelled by ZDeSi (zone design system for interaction data; 
Openshaw and Rao, 1995; Openshaw and Alvanides, 1999) for 402 local authority districts in England and 
Wales using 1991 census data for labour commuting. The comparison of intra-regional flows showed the 
superiority of the ZDeSi model compared to the Intramax approach: the proportions of the intra-regional flows 
were higher for ZDeSi for all systems of FRs (more for systems of small FRs and less for systems of large FRs). 
It was reported also that it was evident from the results that “the Intramax procedure gets trapped in local 
optima, producing low scores and fragmented regions” (Alvanides et al., 2000: 127). 

Watts (2009) evaluated hierarchical versus rule-based techniques of modelling FRs, namely the Intramax 
technique and the modified version of Coombes’ updated algorithm (Coombes and Bond, 2008; Coombes, 
2010), using the principles of fuzzy set theory (Feng, 2009), to explore the local properties of the two solutions. 
The application was carried out for 1365 Australian statistical local areas and labour commuting data. He 
reported that both approaches to grouping had strong, but not robust, local optimisation properties (Watts, 
2009). The robustness was analysed in relation to self-containment as defined by Smart (1974) and Van der 
Laan and Schalke (2001). Watts reported that “the low minimum rate of closure [of the Intramax method] 
underlines the point, however, that the grouping criterion under Intramax is quite different than those criteria 
characterising the Coombes algorithm. The number of groups in the final solution is more readily controlled 
under the Intramax technique, since the stopping rule can easily be adjusted to achieve a given form of final 
solution, which could be based on a minimum closure requirement, rather than the aggregate intrazonal flow. 
There may be limits as to the desirable rates of closure across groups. Otherwise convergence may be achieved 
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studies. Alvanides et al.  (2000) analysed a set of systems 
of hierarchical FRs generated by the Intramax procedure 
and a set of systems of FRs modelled by ZDeSi (zone design 
system for interaction data; Openshaw and Rao,  1995; 
Openshaw and Alvanides,  1999) for  402  local authority 
districts in England and Wales using 1991 census data for 
labour commuting. The comparison of intra-regional flows 
showed the superiority of the ZDeSi model compared to the 
Intramax approach: the proportions of the intra-regional 
flows were higher for ZDeSi for all systems of FRs (more 
for systems of small FRs and less for systems of large FRs). 
It was reported also that it was evident from the results 
that “the Intramax procedure gets trapped in local optima, 
producing low scores and fragmented regions” (Alvanides 
et al., 2000: 127).

Watts  (2009) evaluated hierarchical versus rule-based 
techniques of modelling FRs, namely the Intramax 
technique and the modified version of Coombes’ updated 
algorithm (Coombes and Bond, 2008; Coombes, 2010), using 
the principles of fuzzy set theory (Feng, 2009), to explore the 
local properties of the two solutions. The application was 
carried out for 1,365 Australian statistical local areas and 
labour commuting data. He reported that both approaches 
to grouping had strong, but not robust, local optimisation 
properties (Watts,  2009). The robustness was analysed in 
relation to self-containment as defined by Smart  (1974) 
and Van der Laan and Schalke (2001). Watts reported that 
“the low minimum rate of closure [of the Intramax method] 
underlines the point, however, that the grouping criterion 
under Intramax is quite different than those criteria 
characterising the Coombes algorithm. The number of 
groups in the final solution is more readily controlled under 
the Intramax technique, since the stopping rule can easily 
be adjusted to achieve a given form of final solution, which 
could be based on a minimum closure requirement, rather 
than the aggregate intrazonal flow. There may be limits as 
to the desirable rates of closure across groups. Otherwise 
convergence may be achieved with a singleton group, unless 
there is genuine geographical separation of the labour 
markets” (Watts, 2009: 525). He also noted the superiority 
of the Intramax method regarding the singleton regions.

Landre and H�kansson (2013) compared the performance 
of the Intramax procedure to the rule-based procedure 
used by Statistics Sweden’s  (2010) Local Labour Market 
Areas (LLMAs). The application was performed for 289 
municipalities in Sweden. They reported that “although 
the procedure used for the construction of LLMAs differs 
considerably from that of Intramax regions, the results 
obtained are quite similar for most of the country … Despite 
many similarities, the two methods differ fundamentally 
with regard to self-containment levels and the construction 
of regions in metropolitan areas. In the latter, Intramax 
analysis results in a fragmented pattern with unacceptable 
low levels of self-containment in a number of regions. 
However, LLMAs are clearly too large there” (Landre and 
H�kansson, 2013: 15). The same differences for the urban 
areas, where Intramax gives more fragmented FRs, have 
been reported by Feldman et al. (2005) for Scotland, and by 
Mitchell et al. (2007) for Australia. Landre and Håkansson 
concluded that “both methods could benefit from additional 
controls in their procedures, especially when applied in 
situations where differences in land area are large… for 
Intramax analysis, it could be the application of self-
containment constraints resulting in the amalgamation 
of regions if these constraints are not met” (Landre and 
H�kansson, 2013: 15).

Koo (2012) suggested the use of a new objective function 
in the Intramax procedure that focused on the proportion of 
intra-regional flows,

(5)

simultaneously with the use of a contiguity constraint 
and an area-balanced constraint. The algorithm was 
applied for the Seoul Metropolitan Area’s data on labour 
commuting for a total of 1,180 BDUs. He reported that the 
“algorithm has derived a set of improved functional regions 
that better serves the objective of the regionalisation which 
maximises the proportion of internal flows more compared 
to Intramax” (Koo, 2012: 33). He noted that the constrained 
models gave better results than unconstrained ones with 
respect to the percentage of intra-regional flows. Koo 
also re-confirmed that the original Intramax model gave 
fragmented FRs in large urban areas.

Recently, Drobne and Lakner (2015,  2016) evaluated 
the simultaneous use of three different constraints in 
the Intramax procedure, namely: (a) the contiguity 
constraint; (b) the higher-proportion-of-intra-regional-
flows constraint, which ensures that those regions are 
grouped together that gave a higher proportion of the 
intra-regional (inner) flows; and (c) the lower-coefficient-of-
variation-of-intra-regional-flows constraint, which ensures 
that a grouping of BDUs/FRs gives FRs with a similar 
(proportion) of intra-regional-flows. They noted that, when 
using data on labour commuting, there is no need to include 
the contiguity constraint in the procedure. They reported 
as well that the use of the higher-proportion-of-intra-
regional-flows constraint generates singleton regions, and 
that the lower-coefficient-of-variation-of-intra-regional-
flows constraint forces the biggest BDU, as an isolated FR, 
up to a relatively high level of aggregation. They concluded 
that the Intramax procedure generates fragmented large 
urban areas, but the lower-coefficient-of-variation-of-intra-
regional-flows constraint even more strictly delineates the 
metropolitan area into fragmented pieces.

3. Methodology
The Intramax procedure is a stepwise (hierarchical 

aggregation) procedure. In each step, the two BDUs/FRs 
which the interaction realises the highest value of the 
objective function, are grouped together. In this paper, we 
analysed the performance when using different objective 
functions in the aggregation procedure. The performance 
was measured by known self-containment indicators, as 
well as by the self-containment statistics suggested in this 
paper. Selected systems of hierarchical FRs were compared 
to official regions at NUTS 2 and NUTS 3 levels, as well as 
to the administrative units (AUs) in Slovenia.

The application was done for the inter-municipal labour 
commuting flows in 2011 in Slovenia. The initial dimension 
of the interaction matrix T was N2 = 2102. Of a total 
of  44,100  cells in the matrix, there were  31,557  (71.56%) 
empty cells. In 2011, there were 778,776 labour commuters in 
total, but only 388,376 (49.87%) of them commuted between 
municipalities. The rest  (390,400;  50.13%) formed intra-
municipal flows. The maximum inflow of 109,884 (28.29%) 
labour commuters terminated in the capital Ljubljana, 
which is the biggest employment centre of Slovenia, while 
the outflow from Ljubljana was  16,027  (4.13%) of labour 
commuters.

with a singleton group, unless there is genuine geographical separation of the labour markets” (Watts, 2009: 
525). He also noted the superiority of the Intramax method regarding the singleton regions. 

Landre and Håkansson (2013) compared the performance of the Intramax procedure to the rule-based procedure 
used by Statistics Sweden’s (2010) Local Labour Market Areas (LLMAs). The application was performed for 
289 municipalities in Sweden. They reported that “although the procedure used for the construction of LLMAs 
differs considerably from that of Intramax regions, the results obtained are quite similar for most of the country 
… Despite many similarities, the two methods differ fundamentally with regard to self-containment levels and 
the construction of regions in metropolitan areas. In the latter, Intramax analysis results in a fragmented pattern 
with unacceptable low levels of self-containment in a number of regions. However, LLMAs are clearly too large 
there” (Landre and Håkansson, 2013: 15). The same differences for the urban areas, where Intramax gives more 
fragmented FRs, have been reported by Feldman et al. (2005) for Scotland, and by Mitchell et al. (2007) for 
Australia. Landre and Håkansson concluded that “both methods could benefit from additional controls in their 
procedures, especially when applied in situations where differences in land area are large… for Intramax 
analysis, it could be the application of self-containment constraints resulting in the amalgamation of regions if 
these constraints are not met” (Landre and Håkansson, 2013: 15). 

Koo (2012) suggested the use of a new objective function in the Intramax procedure that focused on the proportion 
of intra-regional flows,  

 =



+




	, (5)

simultaneously with the use of a contiguity constraint and an area-balanced constraint. The algorithm was 
applied for the Seoul Metropolitan Area’s data on labour commuting for a total of 1180 BDUs. He reported that 
the “algorithm has derived a set of improved functional regions that better serves the objective of the 
regionalization which maximizes the proportion of internal flows more compared to Intramax” (Koo, 2012: 33). 
He noted that the constrained models gave better results than unconstrained ones with respect to the percentage 
of intra-regional flows. Koo also re-confirmed that the original Intramax model gave fragmented FRs in large 
urban areas. 

Recently, Drobne and Lakner (2015, 2016) evaluated the simultaneous use of three different constraints in the 
Intramax procedure, namely: (a) the contiguity constraint; (b) the higher-proportion-of-intra-regional-flows 
constraint, which ensures that those regions are grouped together that gave a higher proportion of the intra-
regional (inner) flows; and (c) the lower-coefficient-of-variation-of-intra-regional-flows constraint, which 
ensures that a grouping of BDUs/FRs gives FRs with a similar (proportion) of intra-regional-flows. They noted 
that, when using data on labour commuting, there is no need to include the contiguity constraint in the 
procedure. They reported as well that the use of the higher-proportion-of-intra-regional-flows constraint 
generates singleton regions, and that the lower-coefficient-of-variation-of-intra-regional-flows constraint forces 
the biggest BDU, as an isolated FR, up to a relatively high level of aggregation. They concluded that the 
Intramax procedure generates fragmented large urban areas, but the lower-coefficient-of-variation-of-intra-
regional-flows constraint even more strictly delineates the metropolitan area into fragmented pieces. 

3. Methodology 

The Intramax procedure is a stepwise (hierarchical aggregation) procedure. In each step, the two BDUs/FRs 
which the interaction realises the highest value of the objective function, are grouped together. In this paper, we 
analysed the performance when using different objective functions in the aggregation procedure. The 
performance was measured by known self-containment indicators, as well as by the self-containment statistics 
suggested in this paper. Selected systems of hierarchical FRs were compared to official regions at NUTS 2 and 
NUTS 3 levels, as well as to the administrative units (AUs) in Slovenia.  

The application was done for the inter-municipal labour commuting flows in 2011 in Slovenia. The initial 
dimension of the interaction matrix  was  = 210. Of a total of 44,100 cells in the matrix, there were 
31,557 (71.56%) empty cells. In 2011, there were 778,776 labour commuters in total, but only 388,376 
(49.87%) of them commuted between municipalities. The rest (390,400; 50.13%) formed intra-municipal flows. 
The maximum inflow of 109,884 (28.29%) labour commuters terminated in the capital Ljubljana, which is the 
biggest employment centre of Slovenia, while the outflow from Ljubljana was 16,027 (4.13%) of labour 
commuters. 
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7 CURDS: Centre for Urban & Regional Development Studies in Newcastle University.
8 Smart noted (1974: 270): “Where an area has a large absolute movement of workers to another area, this is represented in the 

numerator of the fraction by its square, ensuring that strong central pulls are not ‘overlooked’. They are, however, balanced by 
the effect of the size of different areas on the denominator of the fraction, which acts as ‘antibody’ in the system preventing the 
emergence of the inflated labour markets [i.e. FRs]”.

9 Coombes and Bond (2008: 234) wrote that “considerable experimentation has led to the choice of the formula to determine in 
which way a zone should be grouped to maximise the likelihood that the resulting TTWA definitions most closely meet their 
objectives. The key need in practice is to enable smaller places near major centres to consolidate as separable TTWAs (where 
commuting flows justify this) because otherwise the TTWAs that include major centres expand remorselessly to engulf all 
surrounding areas, with the result that the set of defined TTWAs is less numerous than the maximum possible which meet the 
set criteria”.

10 As Tolbert and Killian (1987: 16) reported, “the numerator reflects a concern for the total number of commuters between two 
counties [BDUs] (regardless of direction) and as such, provides a measure of the degree of interconnectedness between them. The 
denominator expresses the volume of shared commuters on a relative rather than absolute basis, thus ensuring that the analysis 
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Tab. 1: Objective functions analysed in the hierarchical aggregation procedure
Source: As noted in the table and authors’ elaboration

Id Objective function Description Eq.

F1
Original Intramax objective function (Masser and 
Brown, 1977; Brown and Pitfield, 1990) (6)

F2 Sum-of-flows objective function (7)

F3
Sum-of-proportions-to-intra-regional-flows obje-
ctive function (compare to Koo, 2012) (8)
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First version of CURDS weighted interaction in-
dex (Coombes et al., 1982) (9)

F5 Smart’s (1974) weighted interaction index (10)

F6
Second version of CURDS weighted interaction 
index (Coombes et al., 1986) (11)

F7 Tolbert & Killian’s (1987) interaction index (12)
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The basic property of the automatic hierarchical aggregation procedure should be the inclusion of all BDUs 
into FRs – without leaving any singleton regions. For this reason, we analysed the performance of objective 
functions also by the proportion of singleton regions, which was calculated as 

% = 
 	, (16)

where  is the number of singletons, and  is the total number of FRs (dimension of matrix ) at each step of 
aggregation. 

Properties of different systems of FRs can be compared by absolute values like minimum, maximum, mean,
and standard deviation of self-containment indicators. But, when comparing the homogeneity of FRs, relative 
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Second version of CURDS weighted interaction 
index (Coombes et al., 1986) (11)

  =  + 
	,  Tolbert & Killian’s (1987) interaction index (12)

7 sets of systems of 2–209 FRs, generated in the hierarchical aggregation procedure using objective functions –, were evaluated at each stage of the aggregation procedure by self-containment indicators as suggested by 
Goodman (1970) and Smart (1974) and used very often in the literature (e.g. Casado-Diaz, 2000; Casado-Diaz 
and Coombes, 2011; Landré and Håkansson, 2013; Van der Laan in Schalke, 2001; Watts, 2009); namely, the 
proportion of intra-regional flows, supply-side self-containment (SSSC), and demand-side self-containment 
(DSSC).11 The proportion of intra-regional (inner) flows was calculated as 

% = 1
   ; (13)

and supply-side self-containment () and demand-side self-containment () were calculated as follows: 

 = 

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 = 


	. (15)

The basic property of the automatic hierarchical aggregation procedure should be the inclusion of all BDUs 
into FRs – without leaving any singleton regions. For this reason, we analysed the performance of objective 
functions also by the proportion of singleton regions, which was calculated as 

% = 
 	, (16)

where  is the number of singletons, and  is the total number of FRs (dimension of matrix ) at each step of 
aggregation. 

Properties of different systems of FRs can be compared by absolute values like minimum, maximum, mean,
and standard deviation of self-containment indicators. But, when comparing the homogeneity of FRs, relative 

                                                 
11 In the analysis of labour commuting (journey-to-work) flows, supply-side self-containment (SSSC) is also 
called workplace-based self-containment (Goodman, 1970; Smart, 1974) or employment self-containment (Van 
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The basic property of the automatic hierarchical aggregation procedure should be the inclusion of all BDUs 
into FRs – without leaving any singleton regions. For this reason, we analysed the performance of objective 
functions also by the proportion of singleton regions, which was calculated as 
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index (Coombes et al., 1986) (11)
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7 sets of systems of 2–209 FRs, generated in the hierarchical aggregation procedure using objective functions –, were evaluated at each stage of the aggregation procedure by self-containment indicators as suggested by 
Goodman (1970) and Smart (1974) and used very often in the literature (e.g. Casado-Diaz, 2000; Casado-Diaz 
and Coombes, 2011; Landré and Håkansson, 2013; Van der Laan in Schalke, 2001; Watts, 2009); namely, the 
proportion of intra-regional flows, supply-side self-containment (SSSC), and demand-side self-containment 
(DSSC).11 The proportion of intra-regional (inner) flows was calculated as 

% = 1
   ; (13)

and supply-side self-containment () and demand-side self-containment () were calculated as follows: 

 = 


	, (14)

 = 
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	. (15)

The basic property of the automatic hierarchical aggregation procedure should be the inclusion of all BDUs 
into FRs – without leaving any singleton regions. For this reason, we analysed the performance of objective 
functions also by the proportion of singleton regions, which was calculated as 

% = 
 	, (16)

where  is the number of singletons, and  is the total number of FRs (dimension of matrix ) at each step of 
aggregation. 

Properties of different systems of FRs can be compared by absolute values like minimum, maximum, mean,
and standard deviation of self-containment indicators. But, when comparing the homogeneity of FRs, relative 

                                                 
11 In the analysis of labour commuting (journey-to-work) flows, supply-side self-containment (SSSC) is also 
called workplace-based self-containment (Goodman, 1970; Smart, 1974) or employment self-containment (Van 
der Laan and Schalke, 2001); similarly, demand-side self-containment (DSSC) is also called residence-based 
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11 In the analysis of labour commuting (journey-to-work) flows, supply-side self-containment (SSSC) is also called workplace-
based self-containment (Goodman,  1970; Smart,  1974) or employment self-containment (Van der Laan and Schalke,  2001); 
similarly, demand-side self-containment (DSSC) is also called residence-based self-containment (Goodman, 1970; Smart, 1974) 
or housing self-containment (Van der Laan and Schalke, 2001).

12 Systems of FRs modelled by different methods represent different populations. When comparing the variation of self-
containment of FRs, only relative values should be used. However, there are many reports on standard deviation (absolute value) 
of self-containment in the literature (e.g. Casado-Diaz, 2000; Landre and H�kansson, 2013; Watts, 2009), but, unfortunately, 
there is no notion on relative statistics (e.g. coefficient of variation).

13 Regarding geography, FRs of most of the interactions mentioned here (particularly of commuting and migration) should be 
geographically compact; however, there are some exceptions, like trade FRs.

we translated spatial contiguity into a network tree-
generation problem. In this way, regions and their adjacency 
relationships are expressed as nodes and edges in a graph, so 
that a region is verified as contiguous only if there is at least 
one path connecting all the spatial units within the region 
or if all the spatial units within the region are connected 
to the tree structure (Kim et al., 2015). In our programme 
code, contiguity is checked by the depth-first search (DFS) 
algorithm (Daras, 2005).

Seven sets of systems of  2–209  FRs, generated in 
the hierarchical aggregation procedure using objective 
functions F1–F7, were evaluated at each stage of the 
aggregation procedure by self-containment indicators as 
suggested by Goodman (1970) and Smart (1974) and used 
very often in the literature (e.g. Casado-Diaz, 2000; Casado-
Diaz and Coombes,  2011; Landré and H�kansson,  2013; 
Van der Laan in Schalke,  2001; Watts,  2009); namely, 
the proportion of intra-regional flows, supply-side self-
containment (SSSC), and demand-side self-containment 
(DSSC)11. The proportion of intra-regional (inner) flows 
was calculated as

(13)

and supply-side self-containment (SSSC) and demand-side 
self-containment (DSSC) were calculated as follows:

(14)

(15)

The basic property of the automatic hierarchical 
aggregation procedure should be the inclusion of all BDUs 
into FRs – without leaving any singleton regions. For this 
reason, we analysed the performance of objective functions 
also by the proportion of singleton regions, which was 
calculated as

(16)

where nsi is the number of singletons, and n is the total 
number of FRs (dimension of matrix T) at each step of 
aggregation.

Properties of different systems of FRs can be compared 
by absolute values like minimum, maximum, mean, and 
standard deviation of self-containment indicators. But, 
when comparing the homogeneity of FRs, relative statistics 
are the only valid approach to comparing the variation of 
self-containment of FRs12. In our study, we analysed the 
performance of using different objective functions in the 
hierarchical aggregation procedure to generate homogeneous 
FRs by relative self-containment indicators; namely by the 
coefficient of variation of SSSC and by the coefficient of 
variation of DSSC:

(17)

(18)

where			   ,			       ,

and		             ,	  			     .

We evaluated also the performance of objective functions 
F1–F7 to aggregate contiguous BDUs/FRs with the 
highest interactions when analysing labour commuting 
flows. As it has been shown several times (e.g. Brown and 
Pitfield,  1990; Drobne and Lakner,  2015,  2016; Feldman 
et  al.,  2005; Masser and Scheurwater,  1980), the inclusion 
of the contiguity constraint is, in general, not needed when 
analysing labour commuting flows in the original Intramax 
procedure. However, it should be considered when using 
a different objective function rather than the original 
one (Koo,  2012), in a combination with other constraints 
(Drobne and Lakner, 2015, 2016), or when analysing some 
other data (e.g. financial flows; Kohl and Brouver,  2014). 
When the contiguity constraint is used, two BDUs/FRs that 
give the maximal value of the analysed objective function 
are aggregated only if they are contiguous (γij = 1). On the 
other hand, if the maximal value of the objective function 
is defined by two non-contiguous BDUs/FRs (γij = 0), the 
contiguity constraint is used to seek the first contiguous 
BDUs/FRs. In this way, the constraint forces to aggregate 
two BDUs/FRs that do not provide the maximum value of 
the particular objective function. The sum of deviation from 
the maximum value of the objective function was measured 
by the sum of steps of seeking two contiguous BDUs/FRs 
(hereinafter “contiguity seeking steps”, CSSs). The sum of 
deviation from the maximum value of the objective function, 
because of the contiguity constraint, measures the quality of 
the objective function to aggregate contiguous BDUs/FRs at 
a given interaction matrix. The inclusion of the contiguity 
constraint in the hierarchical aggregation procedure for a 
particular objective function is reported as F1

(γ), F2
(γ) … F7

(γ). 

Following the basic objectives of the functional 
regionalisation by means of the hierarchical aggregation 
procedure, the most suitable systems of hierarchical FRs are 
defined by a relatively higher proportion of intra-regional 
flows (tii

%), by a relatively lower proportion of singleton 
regions (nsi

%), by a lower coefficient of variation of supply-
side self-containment (CVSSSC), by a lower coefficient of 
variation of demand-side self-containment (CVDSSC), and by a 
geographically valid spatial extent13. We evaluated efficiency 
of using different objective functions in the hierarchical 
aggregation procedure by ranks of tii

%, nsi
%, CVSSSC, CVDSSC, 

and CSS at each stage of the aggregation procedure. The 
general efficiency for each objective function is calculated 
as a mean of ranks. The performance of the analysed 
objective functions was evaluated also by dendrograms 

Tab. 1: Objective functions analysed in the hierarchical aggregation procedure. Source: As noted in the table 
and authors’ elaboration. 

Id Objective function Description Eq. 

  = 
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+ 


= 
∗ + 

∗  Original Intramax objective function (Masser and 
Brown, 1977; Brown and Pitfield, 1990) (6)

  =  +  Sum-of-flows objective function (7)
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

 Sum-of-proportions-to-intra-regional-flows objective 
function (compare to Koo, 2012) (8)
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  = 





+ 





=  + 


 Smart’s (1974) weighted interaction index (10)
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Second version of CURDS weighted interaction 
index (Coombes et al., 1986) (11)

  =  + 
	,  Tolbert & Killian’s (1987) interaction index (12)

7 sets of systems of 2–209 FRs, generated in the hierarchical aggregation procedure using objective functions –, were evaluated at each stage of the aggregation procedure by self-containment indicators as suggested by 
Goodman (1970) and Smart (1974) and used very often in the literature (e.g. Casado-Diaz, 2000; Casado-Diaz 
and Coombes, 2011; Landré and Håkansson, 2013; Van der Laan in Schalke, 2001; Watts, 2009); namely, the 
proportion of intra-regional flows, supply-side self-containment (SSSC), and demand-side self-containment 
(DSSC).11 The proportion of intra-regional (inner) flows was calculated as 

% = 1
   ; (13)

and supply-side self-containment () and demand-side self-containment () were calculated as follows: 

 = 


	, (14)

 = 
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	. (15)

The basic property of the automatic hierarchical aggregation procedure should be the inclusion of all BDUs 
into FRs – without leaving any singleton regions. For this reason, we analysed the performance of objective 
functions also by the proportion of singleton regions, which was calculated as 

% = 
 	, (16)

where  is the number of singletons, and  is the total number of FRs (dimension of matrix ) at each step of 
aggregation. 

Properties of different systems of FRs can be compared by absolute values like minimum, maximum, mean,
and standard deviation of self-containment indicators. But, when comparing the homogeneity of FRs, relative 

                                                 
11 In the analysis of labour commuting (journey-to-work) flows, supply-side self-containment (SSSC) is also 
called workplace-based self-containment (Goodman, 1970; Smart, 1974) or employment self-containment (Van 
der Laan and Schalke, 2001); similarly, demand-side self-containment (DSSC) is also called residence-based 
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	,  Tolbert & Killian’s (1987) interaction index (12)

7 sets of systems of 2–209 FRs, generated in the hierarchical aggregation procedure using objective functions –, were evaluated at each stage of the aggregation procedure by self-containment indicators as suggested by 
Goodman (1970) and Smart (1974) and used very often in the literature (e.g. Casado-Diaz, 2000; Casado-Diaz 
and Coombes, 2011; Landré and Håkansson, 2013; Van der Laan in Schalke, 2001; Watts, 2009); namely, the 
proportion of intra-regional flows, supply-side self-containment (SSSC), and demand-side self-containment 
(DSSC).11 The proportion of intra-regional (inner) flows was calculated as 

% = 1
   ; (13)

and supply-side self-containment () and demand-side self-containment () were calculated as follows: 
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The basic property of the automatic hierarchical aggregation procedure should be the inclusion of all BDUs 
into FRs – without leaving any singleton regions. For this reason, we analysed the performance of objective 
functions also by the proportion of singleton regions, which was calculated as 

% = 
 	, (16)

where  is the number of singletons, and  is the total number of FRs (dimension of matrix ) at each step of 
aggregation. 

Properties of different systems of FRs can be compared by absolute values like minimum, maximum, mean,
and standard deviation of self-containment indicators. But, when comparing the homogeneity of FRs, relative 
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statistics are the only valid approach to comparing the variation of self-containment of FRs.12 In our study, we 
analysed the performance of using different objective functions in the hierarchical aggregation procedure to 
generate homogeneous FRs by relative self-containment indicators; namely by the coefficient of variation of 
and by the coefficient of variation of : 

 =  	, (17)

 =  	, (18)

where  = 
 ∑  ,  = 

 ∑    , and  = 
 ∑  ,                                                

 = 
 ∑    . 

We evaluated also the performance of objective functions – to aggregate contiguous BDUs/FRs with the 
highest interactions when analysing labour commuting flows. As it has been shown several times (e.g. Brown 
and Pitfield, 1990; Drobne and Lakner, 2015, 2016; Feldman et al., 2005; Masser and Scheurwater, 1980), the 
inclusion of the contiguity constraint is, in general, not needed when analysing labour commuting flows in the 
original Intramax procedure. However, it should be considered when using a different objective function rather 
than the original one (Koo, 2012), in a combination with other constraints (Drobne and Lakner, 2015, 2016), or 
when analysing some other data (e.g. financial flows; Kohl and Brouver, 2014). When the contiguity constraint 
is used, two BDUs/FRs that give the maximal value of the analysed objective function are aggregated only if 
they are contiguous ( = 1). On the other hand, if the maximal value of the objective function is defined by 
two non-contiguous BDUs/FRs ( = 0), the contiguity constraint is used to seek the first contiguous 
BDUs/FRs. In this way, the constraint forces to aggregate two BDUs/FRs that do not provide the maximum
value of the particular objective function. The sum of deviation from the maximum value of the objective 
function was measured by the sum of steps of seeking two contiguous BDUs/FRs (hereinafter “contiguity 
seeking steps”, CSSs).  The sum of deviation from the maximum value of the objective function, because of the 
contiguity constraint, measures the quality of the objective function to aggregate contiguous BDUs/FRs at a 
given interaction matrix. The inclusion of the contiguity constraint in the hierarchical aggregation procedure for 
a particular objective function is reported as ,  … .  

Following the basic objectives of the functional regionalization by means of the hierarchical aggregation 
procedure, the most suitable systems of hierarchical FRs are defined by a relatively higher proportion of intra-
regional flows (%), by a relatively lower proportion of singleton regions (%), by a lower coefficient of 
variation of supply-side self-containment (), by a lower coefficient of variation of demand-side self-
containment (), and by a geographically valid spatial extent.13 We evaluated efficiency of using different 
objective functions in the hierarchical aggregation procedure by ranks of %, %,  ,  , and CSS at 
each stage of the aggregation procedure. The general efficiency for each objective function is calculated as a 
mean of ranks. The performance of the analysed objective functions was evaluated also by dendrograms and by 
animations of the hierarchical aggregation of BDUs into FRs, which were generated by our programme code in 
Mathematica 10.3. 

The properties of FRs modelled in the original Intramax procedure were then compared to the current 
regions at NUTS 2 and NUTS 3 levels and administrative units in Slovenia. In Slovenia, there are 2 regions for 
the application of regional policies at NUTS 2 level also called “macro regions” or “cohesion regions”, and 
there are 12 “statistical regions” at NUTS 3 level also called “development regions”. Below the NUTS 3 level in 
Slovenia, there is the LAU 1 level where 58 “administrative units” are defined. 

                                                 
12 Systems of FRs modelled by different methods represent different populations. When comparing the variation 
of self-containment of FRs, only relative values should be used. However, there are many reports on standard 
deviation (absolute value) of self-containment in the literature (e.g. Casado-Diaz, 2000; Landre and Håkansson, 
2013; Watts, 2009), but, unfortunately, there is no notion on relative statistics (e.g. coefficient of variation). 
13 Regarding geography, FRs of most of the interactions mentioned here (particularly of commuting and 
migration) should be geographically compact; however, there are some exceptions, like trade FRs. 
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BDUs/FRs. In this way, the constraint forces to aggregate two BDUs/FRs that do not provide the maximum
value of the particular objective function. The sum of deviation from the maximum value of the objective 
function was measured by the sum of steps of seeking two contiguous BDUs/FRs (hereinafter “contiguity 
seeking steps”, CSSs).  The sum of deviation from the maximum value of the objective function, because of the 
contiguity constraint, measures the quality of the objective function to aggregate contiguous BDUs/FRs at a 
given interaction matrix. The inclusion of the contiguity constraint in the hierarchical aggregation procedure for 
a particular objective function is reported as ,  … .  

Following the basic objectives of the functional regionalization by means of the hierarchical aggregation 
procedure, the most suitable systems of hierarchical FRs are defined by a relatively higher proportion of intra-
regional flows (%), by a relatively lower proportion of singleton regions (%), by a lower coefficient of 
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 ∑  ,  = 
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procedure, the most suitable systems of hierarchical FRs are defined by a relatively higher proportion of intra-
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variation of supply-side self-containment (), by a lower coefficient of variation of demand-side self-
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each stage of the aggregation procedure. The general efficiency for each objective function is calculated as a 
mean of ranks. The performance of the analysed objective functions was evaluated also by dendrograms and by 
animations of the hierarchical aggregation of BDUs into FRs, which were generated by our programme code in 
Mathematica 10.3. 

The properties of FRs modelled in the original Intramax procedure were then compared to the current 
regions at NUTS 2 and NUTS 3 levels and administrative units in Slovenia. In Slovenia, there are 2 regions for 
the application of regional policies at NUTS 2 level also called “macro regions” or “cohesion regions”, and 
there are 12 “statistical regions” at NUTS 3 level also called “development regions”. Below the NUTS 3 level in 
Slovenia, there is the LAU 1 level where 58 “administrative units” are defined. 

                                                 
12 Systems of FRs modelled by different methods represent different populations. When comparing the variation 
of self-containment of FRs, only relative values should be used. However, there are many reports on standard 
deviation (absolute value) of self-containment in the literature (e.g. Casado-Diaz, 2000; Landre and Håkansson, 
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and by animations of the hierarchical aggregation of BDUs 
into FRs, which were generated by our programme code in 
Mathematica 10.3.

The properties of FRs modelled in the original Intramax 
procedure were then compared to the current regions at 
NUTS  2 and NUTS  3 levels and administrative units in 
Slovenia. In Slovenia, there are 2 regions for the application 
of regional policies at NUTS  2 level also called “macro 
regions” or “cohesion regions”, and there are 12 “statistical 
regions” at NUTS 3 level also called “development regions”. 
Below the NUTS 3 level in Slovenia, there is the LAU 1 level 
where 58 “administrative units” are defined.

4. Results and discussion 
First, we represent and discuss the results of the 

hierarchical aggregation procedure regarding different 
objective functions without the use of the contiguity 
constraint. Fig. 1 shows the results with respect to intra-
regional flows, singleton regions, and the homogeneity 
of supply-side and demand-side self-containment of the 
hierarchical FRs. Comparing the performance of objective 
functions regarding the proportion of intra-regional flows 
(Fig. 1a), the superiority of F2 and the inferiority of F1 are 
obvious. From other objective functions, good results were 
obtained by the use of F7 and F4 for the regionalisation at 
the beginning of the aggregation procedure, but for the 
use of F6 good results were found only at the end of the 
procedure.

Regarding the number of singleton regions, the results 
of using F1 and F2 are opposite of that for intra-regional 
flows (compare Fig.  1a and Fig.  1b). The most effective 
objective function at all aggregation levels that aggregates 
singletons is original Intramax function F1. It starts to 
aggregate small BDUs first and leaves the most important 

destination BDU in Slovenia, i.e. the capital of Ljubljana, 
as a singleton region up to the last 10% of the aggregation 
steps (ASs). But, F2 chains neighbouring BDUs to Ljubljana. 
So, the number (proportion) of remaining singletons is the 
highest for all stages of aggregation when using the sum-
of-flows function F2. Among other objective functions, 
at the beginning of the aggregation procedure, F5 and F6 
reduce the number of singletons fast, but they miss some 
of them for the rest of the steps. F3 and F4 produce very 
similar results, aggregating singletons much earlier than F7. 
Among the functions that solve the problem of aggregating 
small BDUs (and not leaving singletons), F1 performs the 
best, as it aggregates the last singletons in the 190th AS; the 
next-best functions are F3 and F4, which aggregate the last 
singletons in the 191st and 192nd AS, respectively, whereas 
F7 aggregates them in the 196th AS. However, F1 performs 
quite differently from the other functions, as it leaves the 
bigger BDUs as separate FRs to compete with other FRs, 
whereas F3, F4, and F7 produce singletons that cannot 
compete with other FRs at each stage of the aggregation 
procedure (in our case, singleton regions were different 
borderline municipalities whose inferiority was evident at 
each step before they were aggregated into FRs).

The hierarchical aggregation procedure should produce 
systems of homogeneously self-contained FRs with the 
smallest possible variation of supply-side and demand-side 
self-containment. Here, F3 and F4 give the best results for 
almost the whole procedure of the aggregation. F1 is better 
only for the last steps of the aggregation, when modelling 
just 2–5 FRs. F5 is also competitive, but only at the beginning 
and at the end of the aggregation procedure. The most 
dissimilar FRs regarding the self-containment of flows were 
obtained using F2 and F6. Comparison of homogeneity of self-
containment of FRs generated by different objective functions 
shows also that, among the objective functions analysed here, 

Fig. 1: (a) Proportion of intra-regional flows, (b) proportion of singleton regions, (c) coefficient of variation of supply-
side self-containment, and (d) coefficient of variation of demand-side self-containment, hierarchical aggregation of 
municipalities regarding the labour commuting flows without the continuity constraint (Slovenia, 2011)
Source: authors´ calculations
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the original Intramax objective function performs better, in 
general, regarding the supply-side self-containment than 
regarding the demand-side self-containment.

The performance of using the individual objective function 
in the hierarchical aggregation procedure can also be expressed 
by the capability to aggregate contiguous BDUs at a given 
interaction matrix. Such a capability of the analysed objective 
functions for data on labour commuting between Slovene 
municipalities in 2011 was measured by the sum of deviations 
from the maximum value of the objective function, namely, 
contiguity seeking steps, CSSs; see Fig.  2 where frequency 
distribution of CCSs is represented. Here, F2

(γ), which forced 
almost  490  CCSs in total, was the least effective objective 
function among all the analysed objective functions. It was 
followed by F3

(γ) with more than 150 CSSs, by F7
(γ) with more 

than 50 CSSs, and by F5
(γ) with 12 CSSs. Objective functions 

F1
(γ), F4

(γ), and F6
(γ) are very effective objective functions while 

they aggregated mostly contiguous BDUs/FRs: F4
(γ) forced 

only 3 CSSs, F6
(γ) only 2 CSSs, and F1

(γ) only 1 CSS.

From the aforementioned results of the comparative 
analysis of using vs. omitting the contiguity constraint and 
from Fig.  2, we summarise that the use of the contiguity 

constraint is not needed when modelling bigger labour 
commuting FRs (in our case 2 to 20 FRs) – this is valid for 
the use of all analysed objective functions. Especially when 
using the objective function that considers variations in 
all rows and columns in the interaction matrix – like the 
original Intramax function (F1) or the first (F4) and the 
second CURDS’s weighted interaction function (F6) – the 
results of modelling FRs are similar when using or omitting 
the contiguity constraint.

The evaluation of using different objective functions in 
the hierarchical aggregation procedure by ranks of intra-
regional flows, proportion of singleton regions, coefficient 
of variation of supply-side self-containment, coefficient of 
variation of demand-side self-containment, and contiguity 
seeking steps that were calculated at each aggregation 
stage showed that, in general, F3, F4, F5, and F7 generate 
statistically better results than original Intramax objective 
function F1; see Fig. 3. According to the general evaluation of 
statistical results, F2 and F6 are the only objective functions 
whose efficiency is statistically worse than that of using F1. 
However, geographic and operational evaluation of systems 
of hierarchical FRs by dendrograms and by animations of the 

Fig.  2: Sum of deviations from maximum values of the objective function because of the contiguity constraint 
(Slovenia, 2011). Source: authors´ calculations

Fig. 3: General evaluation of sets of hierarchical functional regions modelled using objective functions F1–F7 by 
ranks of the analysed indicators: (a) mean of the ranks in the set of systems of functional regions, (b) mean of the 
ranks by systems of functional regions, hierarchical aggregation of municipalities regarding the labour commuting 
flows without the use of the contiguity constraint (Slovenia, 2011). Source: authors´ calculations
Note: A lower value indicates better ranking
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aggregation of municipalities showed that the most suitable 
FRs were generated using the original Intramax procedure. 
Besides the original Intramax objective function, Smart’s 
weighted interaction index models also persuasive labour 
commuting FRs (if singletons are corrected manually).

The efficiency of FRs modelled by the original Intramax 
procedure was analysed also by comparison to the 
delimitation of Slovenian territory into 2 “cohesion regions” 
at the NUTS 2 level (see Fig. 4), into 12 “statistical regions” 
at NUTS 3 level (see Fig. 5), and into 58 administrative units 

of Slovenia at LAU 1 level (see Fig. 6). While the cohesion 
regions have existed only since 2008, the first version of 
statistical regions dates back to the mid-1970s. At that 
time, statistical regions were established for the purpose of 
regional planning and cooperation in various sectors. The 
first regionalisation of statistical regions was supported by 
exhaustive gravity analysis of labour markets, education 
areas, and supply markets in twelve regional, and their 
sub-regional, centres. Up to  2011, statistical regions were 
fine-tuned several times – that is the reason why today’s 

Fig.  4: Two regions at NUTS  2 level and  two functional regions modelled by original Intramax procedure 
(Slovenia, 2011). Source: authors´ calculations
Notes: The number of the municipalities in the FR is given in square bracket. In 2011, there were 210 municipalities 
in Slovenia.

Fig. 5: 12 statistical regions at NUTS 3 level and 12 functional regions modelled by original Intramax procedure 
(Slovenia, 2011). Source: authors´ calculations
Notes: Regions at NUTS 3 level are: Pomurska (SI011), Podravska (SI012), Koroška (SI013), Savinjska (SI014), 
Zasavska (SI015), Posavska (SI016), South-East Slovenia (SI017), Primorsko-notranjska (SI018), Central Slovenia 
(SI021), Gorenjska (SI022), Goriška (SI023), and Obalno-kraška (SI024). The number of the municipalities in the 
FR is given in square brackets. In 2011, there were 210 municipalities in Slovenia
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Tab. 2: Comparison of functional regions in 2011 to the delimitation of the Slovenian territory at NUTS 2 and 
NUTS 3 levels and to administrative units (Slovenia, 2011). Source: authors’ elaboration
Notes: FR denotes functional region, Tii denotes intra-regional flow, SSSC is supply-side self-containment, DSSC 
is demand-side self-containment, CV is coefficient of variation, Min denotes minimum, and Max denotes maximum

Fig. 6: 58 administrative units at LAU 1 level and 58 functional regions modelled by original Intramax procedure 
(Slovenia, 2011). Source: authors´ calculations
Notes: The maps indicates the codes for administrative units. The list of 58 administrative units is available at 
http://www.upravneenote.gov.si/. In 2011, there were 210 municipalities in Slovenia

Slovenian regions at NUTS 3 level are very stable (Drobne 
and Bogataj,  2012a; SORS,  2016). Some  58  administrative 
units were set up in 1991 to optimise administrative tasks 
between citizens and state. They were delimitated on 
the base of  62  old municipalities that were transformed 
into much smaller ones  (147) in  1994. From that time, 
municipalities in Slovenia were changed several times to 
the 212 municipalities existing in 2016.

The comparison of FRs to official regions and 
administrative units showed that  12  statistical regions 
and  58  administrative units, which were delimitated on 
the long-term bases of functional interactions in Slovenian 
territory, demonstrated higher self-containment than the 

corresponding number of FRs. From Tab. 2, it is evident that 
the proportion of intra-regional flows at the state level is 
higher, as well as the homogeneity regarding intra-regional 
flows, supply-side and demand-side self-containment for 
statistical regions and administrative units, than for FRs 
modelled using the original Intramax procedure.

But, both cohesion regions at NUTS  2 level, which 
were established for the application of regional policies, 
demonstrate lower self-containment than FRs. Among 
others, the reason for that is rooted in Slovenian tradition. 
In older European Union member countries, administrative 
regions are the units in which regional economic policies 
are designed and executed and the members of regional 

 
2 NUTS 2 
(cohesion) 

regions
2 FRs

12 NUTS 3 
(statistical) 

regions
12 FRs 58 AUs 58 FRs

Tii or SSSC or DSSC 
at state level

92.0% 95.5% 83.7% 81.3% 64.5% 63.4%

CVTii
0.053 0.038 0.124 0.147 0.240 0.388

MinTii
87.2% 90.9% 59.5% 51.5% 29.9% 17.0%

MaxTii
97.0% 98.1% 92.7% 91.9% 86.9% 85.4%

CVSSSC 0.053 0.038 0.124 0.147 0.240 0.388

MinSSSC 87.2% 90.9% 59.5% 51.5% 29.9% 17.0%

MaxSSSC 97.0% 98.1% 92.7% 91.9% 86.9% 85.4%

CVDSSC 0.047 0.006 0.057 0.075 0.140 0.254

MinDSSC 88.0% 95.1% 73.9% 68.6% 45.1% 6.7%

MaxDSSC 96.7% 96.3% 94.0% 94.0% 89.7% 89.7%
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governments and regional parliaments find their 
constituencies. Regional economic policy thus primarily 
reflects the administrative regions’ interests; therefore they 
are the proper starting points for most purposes of regional 
economic policy analysis. However, there was no “middle 
layer” of government between the central state and the 
municipal level in most new member states of the European 
Union – so, there was no such tradition. This was also the 
case in Slovenia (Drobne et al., 2009).

The shortcoming of the Intramax procedure to model too 
many FRs in a metropolitan area can be observed in Fig. 6, 
where the metropolitan areas of the two most important 
employment centres in Slovenia, Ljubljana and Maribor, are 
fragmented into a number of FRs. On the other hand, most 
of the rest of Slovenian territory is delimitated into FRs 

with a similar area. The administrative unit of Ljubljana 
consists of  10  municipalities that belong to  9  different 
FRs, and Maribor covers the territory of 6 municipalities 
that belong to  4  different FRs. The fragmentation of the 
metropolitan areas of Ljubljana and Maribor is visible even 
at the level of 12 FRs; see Fig. 5.

As Landre and H�kansson (2013) have already reported 
for Sweden, this was also the case for Slovenia, i.e. that 
FRs generated by the Intramax procedure resulted in a 
fragmented pattern with (unacceptable) low levels of self-
containment in the metropolitan area. From Fig.  7 it is 
evident that the two most important employment centres 
in Slovenia (Ljubljana and Maribor) are surrounded by 
municipalities/FRs with a very low proportion of intra-
regional flows and low SSSC and DSSC. DSSC of near 

Fig. 7: 58 functional regions modelled by original Intramax procedure (Slovenia, 2011)
Source: authors´ calculations

Fig. 8: 58 functional regions modelled using Smart’s weighted objective function and 15 regional centres of Slovenia 
as defined in the Spatial Development Strategy of Slovenia (SDSS, 2004) (Slovenia, 2011) 
Source: authors´ calculations and SDSS (2004)
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municipalities/FRs is much higher than their SSSC. So, 
the final result modelled by Intramax procedure could 
be controlled by additional self-containment criteria to 
amalgamate BDUs/FRs that do not meet them. In this 
way, most neighbour municipalities/FRs around Ljubljana 
and Maribor would be aggregated into two bigger FRs that 
reflected the functional urban area much more realistically 
than the delimitation shown in Fig. 7. On the other hand, 
the problem of fragmented (metropolitan) urban areas can 
be (partly) solved by using Smart’s weighted interaction 
index F5 instead of original Intramax objective function 
F1. Figure 8 shows the result of using objective function 
F5 in the hierarchical aggregation procedure. Here,  58 
FRs generated by Smart’s weighted interaction index 
are compared to  15  regional centres in Slovenia that are 
defined in the Spatial Development Strategy of Slovenia 
(SDSS, 2004).

5. Conclusions
There are many different approaches and methodologies to 

delineate functional regions (some of which are mentioned in 
this paper). Intramax is a hierarchical aggregation procedure 
that tends to delimitate, in its original form (when using the 
original Intramax objective function), homogeneous FRs 
regarding intra-regional flows. Variation of intra-regional 
flows, delimitated by other objective functions analysed 
herein, is always higher. The tendency to generate FRs with 
similar intra-regional flows is the reason why the original 
Intramax function divides metropolitan urban areas into 
smaller sub-regions (Drobne and Lakner, 2016).

Use of the original Intramax objective function in the 
hierarchical aggregation procedure operationally delineates 
the most persuasive regions, but self-containment 
statistics, and especially the proportion of inner flows, are 
less acceptable. In general, other objective functions give 
statistically more persuasive results but operationally less 
suitable regions. More precisely, if the problem of singleton 
regions and small isolated FRs were manually corrected, 
Smart’s weighted interaction index (Smart,  1974: see also 
equation (10) in Tab. 1) would aggregate regions that would 
be operationally acceptable for the case of Slovenia. Smart’s 
weighted interaction index also generates non-fragmented 
functional urban areas.

In this case study, we compared functional regions 
delimitated by the original Intramax procedure to three 
official delimitations of the Slovenian territory. Two 
delimitations that are based on long-term analyses of 
functional interactions, fine-tuned and optimised several 
times in the past, demonstrate higher self-containment 
than functional regions. On the other hand, the recent 
delimitation of Slovenia into two cohesion regions at NUTS 2 
level shows lower self-containment than the two functional 
regions calculated in the original Intramax procedure, using 
labour commuting inter-municipal interactions.

As already noted, hierarchical aggregation procedures, like 
Intramax, do not guarantee a global optimal solution to the 
regionalisation problem. But, the most important advantage 
of the hierarchical aggregation procedure is its capability 
to reveal the structure of the grouping process. Masser and 
Brown (1978: 17) concluded that “the development of special 
types of hierarchical aggregation procedure is a useful 
starting point for dealing with the multi-level specification 
problem. Procedures of this kind have the advantage that 
they give insights into the structure of the grouping process 
which can be used to select the desired level of spatial 

representation and they also give some indication as to the 
possible configuration of basic data units that occurs at 
different levels in the grouping process”.

From this point of view, the step-by-step use of two or 
more objective functions in the same aggregation procedure 
could be an interesting topic for future research. Here, a 
combination of the original Intramax objective function 
and Smart’s weighted interaction index to avoid the 
fragmentation of metropolitan areas should be looked 
into first. On the other hand, and as already noted by 
Landre and H�kansson  (2013), the fragmented pattern of 
functional regions in metropolitan areas could be improved 
by the inclusion of the additional self-containment criteria 
in the whole aggregation procedure or in some of the last 
aggregation steps. Searching for a new theoretically defined 
objective function could be another promising research 
direction. Variations of the objective functions compared in 
this paper could be analysed, starting with non-symmetric 
functions (Fij ≠ Fji), in which different weights could be 
assigned to origins or destinations.
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Figures 8, 9: New small terrace houses in Wieliczka town, the Kraków metropolitan area (Photo: S. Kurek)

1 Group 1: municipalities with less than 2,001 inhabitants; group 2: between 2,001 and 5,000; group 3: between 5,001 and 10,000; 
and group 4: between 10,001 and 20,000.

2 This fact is discussed in detail in section 5.

1. Introduction
As in many other countries, microdata derived from a 

Census of Population are a very rich source of information 
for the analysis of socio-economic phenomena in Spain. One 
of the potential applications of this dataset is conducting 
labour market analyses at very detailed territorial levels, 
something that is not feasible when using other, more 
frequently updated, sources of information such as a Labour 
Force Survey, due to their sampling limitations. When 
attempting to conduct analyses based on Census microdata, 
however, researchers and other potential users are faced 
with the fact that (e.g., in the Spanish case) the geographic 
reference provided for the majority of indicators appears at a 
provincial level (NUTS 4), with information on the reference 
municipality (LAU 2) available only when the population 
of said municipality exceeds some threshold (e.g., 20,000 
inhabitants in Spain). In the remainder of the cases, the 
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information is aggregated into four groups of municipalities1 
for each province, mainly due to confidentiality and 
sampling constraints. In these cases, apart from the 
province code, there is only information provided on the 
population category to which the municipality of residence 
belongs (e.g. the municipality of residence belongs to 
province x and is in the range  2,001– 5,000 inhabitants). 
Since about  95% of the  8,116  Spanish municipalities 
have less than  20,000  inhabitants, this characteristic of 
the microdata set results in the loss of a large amount of 
potentially useful information2. These restrictions apply to 
seven territorial variables: place of residence, place of birth, 
previous place of residence, place of residence one year ago, 
place of residence ten years ago, place of second residence 
and place of work.

The motivation for this article is therefore practical. It 
seeks to produce a geography that allows the re-codification 
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3 LMAs were defined using a variation of the so-called GEA method (Martínez-Bernabeu, et al., 2012). The output of such a 
process was the partition of the 8,116 Spanish municipalities into a total of 260 non-overlapping LMAs made up of one or more 
contiguous municipalities, with each LMA having a population exceeding 20,000 inhabitants and a self-containment of over 70% 
(i.e., at least 70% of local jobs are taken by residents of the area, and at least 70% of the residents work locally).

4 On the occasion of the new 2011 Census of Population, maintenance of the existing set of OAs was preferred to the complete 
re-design of this set of zones. This involved splitting, merging or re-designing a small sub-set of existing OAs, a process that 
was based on AZP but that required more manual intervention as compared to the original delineation process conducted 
in 2001 (Cockings et al., 2011).

of the territorial variables in the Census microdata file in 
order to regain as much spatial information as possible, so 
that the currently vague reference to population intervals 
for less-populated municipalities may be substituted by 
a reference to specific clusters of municipalities. Such 
clusters are designed to meet the statistical constraints 
imposed by the National Institute of Statistics, which in 
this case refer only to a minimum population threshold, 
and to nest in the upper-level geography of labour market 
areas (LMAs, a set of functional areas which was defined in 
other research: Martínez-Bernabeu et al., 2016)3. Some of 
the LMAs have a reasonable level of spatial resolution to be 
used as the geographic reference in order to re-codify the 
microdata, but many of them could be further sub-divided 
if the only requirement to be fulfilled is that of having a 
minimum population size of 20,000. Therefore, to further 
increase territorial detail, this article aims at sub-dividing 
these LMAs into so-called “municipality clusters”, with 
populations over 20,000 inhabitants for which a minimum 
self-containment level is not required. As in the case of 
LMAs, this regionalisation is characterised by an exhaustive 
coverage of the entire territory under consideration, not 
allowing overlapping between the resulting areas and 
enforcing contiguity between the municipalities making up 
each cluster.

Fulfilling the objective of this article, the subdivision 
of the Spanish LMAs into their constituting clusters 
of municipalities to increase territorial detail in the 
Census  2011  individual data sets, involved the definition 
of a new procedure based on evolutionary computation. 
Such a procedure has been tailored to fit the specific 
characteristics of the problem, since despite being guided 
by the commuting links between the municipalities and 
the interaction between clusters in these same terms, 
the process of delineation of clusters is quite different 
from the identification of LMAs. Thus, while the aim 
of the definition of the Spanish LMAs was to maximise 
the internal interaction between the constituting 
municipalities within each LMA subject to the fulfilment of 
both a minimum population condition and a trade-off rule 
between self-containment and area (Martínez-Bernabeu et 
al., 2016), the aim of this work is to maximize the number 
of clusters identified so that each LMA is sub-divided into 
as many clusters as possible, each of which must exceed the 
minimum population threshold.

The remainder of this article is organized as follows: 
Section 2 provides the background for the analysis and in 
Section  3 the different elements making up the problem 
are described in detail. The latter include the problem 
formulation as an optimization procedure subject to 
certain constraints, guided by a fitness function based 
on an interaction (in terms of travel-to-work) index. 
In Section  4, the evolutionary algorithm (structure, 
chromosome representation, operators and configuration/
parameters) used is described in detail. The resulting set 
of 931 municipality clusters is presented and discussed in 
Section 5. Finally, Section 6 offers some conclusions.

2. Background
The problem addressed in this article -- grouping a set 

of elements with an associated size (or cost) into as many 
disjoint groups subject to reach a minimum size as possible – 
is a specific case of the more general Set Partitioning (SP) 
problem (Balas and Padberg,  1976). In the SP problem, 
the input is a finite set of elements, U, called a universe, 
and a set of possible subsets of the universe, S, each with 
an associated cost. The task is to find the partition P (i.e. 
a subset of S so that all sets in P are pairwise disjoint and 
the union of P is equal to the universe) with minimum 
total cost, calculated as the sum of the costs of each subset 
in the partition. This is a complex problem (NP-complete) 
having numerous real-life applications, e.g. airline crew 
scheduling (Barnhart et al.,  2003) and vehicle routing 
(Toth and Vigo,  2001). Most of the applications of the SP 
problem solve it through integer programming for small 
instances and approximation algorithms for instances that 
become computationally intractable through exact methods 
(Laporte,  1992). Other forms of optimisation methods, 
particularly genetic algorithms, have also been successfully 
used (e.g. Levine,  1996), and are particularly useful when 
facing large instances in which linear relaxations and 
approximations for the integer programming approach do 
not suffice to make them computationally tractable.

This article focuses on a specific instance of this problem. 
Such an instance has some peculiarities compared with the 
general SP problem: its objective is to maximise the value 
of the partition instead of minimising its cost; and, more 
importantly, the number of possible subsets of the universe, 
S, is not an input to the problem (i.e. it is unknown a 
priori). Instead of generating a huge set of possible subsets 
in a first step and then solving the associated SP problem, 
these approaches solve both problems simultaneously by 
applying a stochastic optimisation method that performs a 
randomised search over possible partitions.

One example of such a family of applications is the 
delineation of Census “output areas” (OAs). This consists 
of the grouping of a given set of spatial building blocks 
into subsets which are argued to be appropriate for the 
publication and the integration of different datasets derived 
from a Census of Population. In the case of the UK, OAs 
of the  2011  Census were defined4 for England and Wales 
using the “automated zoning procedure” (AZP) originally 
designed by Openshaw (1977a and b) and further refined by 
Openshaw and Rao  (1995). This procedure departs from a 
possible regionalisation of OAs (the definition of such areas 
specifically produced for the previous Census), and iteratively 
re-allocates building blocks, chosen at random, between OAs, 
accepting one specific re-allocation if it improves the design 
criteria and otherwise rejecting it, until no more positive re-
allocations are found after a certain number of iterations. 
In the case of the OAs (Martin et al.,  2001), such criteria 
included a constraint in terms of minimum population and 
three objectives to be optimised (with each given the same 
weight): a target population criterion (minimising the sum 
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5 The methods applied can be more often characterised as greedy: they use one or more heuristics that quickly produce a reasonable 
but sub-optimal regionalisation, through methods that are not based on a fitness function to be maximised and therefore cannot 
be characterised as optimisation procedures.

of the squared differences between OA populations and the 
specified target population within each administrative area), 
the (within zone) social homogeneity (measured as the intra-
area correlation in terms of dwelling type and tenure); and 
morphological compactness (which implied minimising the 
squared perimeter divided by area). The stochastic nature 
of this procedure allows for an automatic search over the 
possible regionalisations without the need to implement 
complex heuristics, but it does have some handicaps. 
First, it only considers single building blocks re-allocations 
and only accepts them if they improve the design criteria. 
Therefore, it does not allow for an exhaustive search of the 
solutions' space and will get trapped in local maxima if the 
problem is not trivial. Second, it does not allow changes to 
be made to the initial number of OAs, which remains fixed 
as the number of regions of the initial solution or by user 
input if no initial regionalisation was provided, and that is a 
problem when there is no a priori knowledge regarding the 
appropriate number of regions.

A different group of SP problems that has connections with 
the one on which this article focuses, is that of tackling with 
the definition of LMAs: areas aimed at capturing the local 
dimension of labour markets understood as the spaces where 
local supply and demand for labour meet. Ideally, each LMA 
should be characterised by being externally self-contained in 
terms of commuting to work (i.e., there are few commuters 
travelling between different LMAs), and by being internally 
integrated in those same terms (i.e., the ideal LMA should 
consist of basic building blocks among which daily commuting 
flows are abundant). Although international experience 
is quite extensive (see, for example, Casado-Díaz and 
Coombes, 2011), only a limited number of authors have dealt 
with the problem of delineation of LMAs as a SP problem5. 
Authors who have addressed this issue include Flórez-
Revuelta et al.  (2008), Farmer and Fotheringham  (2011), 
Fusco and Caglioni (2011), Martínez-Bernabeu et al. (2012), 
Chakraborty et al. (2013) and Alonso et al. (2015).

Flórez-Revuelta et al.  (2008) proposed a grouping 
evolutionary algorithm (a general-purpose optimisation 
technique used in Artificial Intelligence, with genetic 
operators specifically designed to fit grouping problems) 
in order to optimise a fitness function that measures 
the interaction within LMAs, subject to reach certain 
minimum self-containment and population thresholds. 
Their fitness function is based on the interaction index 
(originally proposed by Smart,  1974) that is used to 
define the official Travel-to-Work Areas (TTWAs) in the 
UK (Coombes et al.,  1986; Coombes and Bond, 2008; 
ONS,  2015) and the Sistemi Locali del Lavoro in Italy 
(ISTAT,  1997;  2005;  2014), their local version of LMAs. 
Martínez-Bernabeu et al.  (2012) further improved upon 
the work by Flórez-Revuelta et al.  (2008) by designing 
renovated search operators that allow for higher quality 
results and a reduction in computational costs. Alonso 
et al.  (2015) propose and exemplify a delineation scheme 
based on these grouping evolutionary algorithms.

The work by Farmer and Fotheringham (2011) and Fusco 
and Caglioni  (2011) use a different objective function, the 
modularity quality index. This function, borrowed from 
Newman and Girvan (2004), was originally developed for the 
detection of (social) communities in networks. It accumulates 

the difference between the interaction links within each 
community and their expected value in a network having 
the same nodes but with uniformly distributed flows (the 
null model). The use of the modularity function has been 
criticised in the context of community detection (Fortunato 
and Barthelemy, 2007; Lancichinetti and Fortunato, 2011), 
since it is unable to identify communities (that are 
obvious to the human eye) when the number of nodes vary 
sufficiently between different communities (or, in the LMA 
context, when large variations between the actual LMAs 
are observed in population terms). Moreover, the expected 
interaction value in the null model increases with the size 
of the territory under analysis, while the actual LMAs for 
a given region should not depend on whether or not some 
other unrelated regions are included in the analysis. These 
drawbacks of the modularity function lead to our preference 
for the interaction function of Flórez-Revuelta et al. (2008), 
as well as their general methodology, which has been 
found to produce better results than the widely- applied 
TTWAs method, in terms of the number of identified LMAs 
and cohesion values for the same levels of minimum self-
containment, while the works based on modularity have not 
been compared with alternative approaches.

Since this article focuses on the problem of identifying 
subsets of municipalities within each LMA, it was considered 
important to retain the assessment of the commuting links 
at a cluster level as part of the delineation process (and 
this is a type of variable that is not considered in the OAs 
definition process, which is based on the attributes of the 
building blocks and not on the functional relationships 
observable between them). Moreover, AZP suffer some 
technical inconveniences that have been outlined above. 
This led us to favour the adaptation of a different grouping 
algorithm (GEA: see below) in order to tackle this specific 
problem instead of adopting any of the other obvious 
alternatives. This process has involved defining a fitness 
function, constraints and a set of operators adapted to this 
specific grouping problem.

3. Problem statement
As stated in the previous sections, the problem consists 

of the within-LMA grouping of basic spatial units (BSU), 
in this case municipalities, into as many geographically 
continuous clusters of municipalities with a minimum size 
of  20,000  inhabitants as possible. Thus, the number of 
identified clusters is the main objective to be maximised.

We also introduce the maximisation of the interaction 
between municipalities within each area as a secondary 
objective. That is, we shall always prefer producing 
(continuous) groupings consisting of (n + 1) clusters over 
groupings of n clusters, but when facing two alternative 
groupings with the same number of clusters, we shall 
prefer the one with the higher inner interaction. Thus, the 
defined clusters shall be as connected as possible, avoiding 
the identification of clusters composed of BSUs that are not 
linked by commuting flows whenever possible.

3.1 Problem formulation
Let U = {1, 2, … N} be a set of N = |U| BSUs (the LMA 

to be divided into clusters of municipalities); T, the matrix 
of commuting flows, so that Tij is the number of commuters 
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6 This is performed by randomly selecting three elements and then selecting the one with highest (or lowest) score in the given 
characteristic.

from BSU i to BSU j; and P, the vector of populations, so 
that Pi is the population of BSU i. The objective is to obtain 
the set of clusters C = {C1, C2, ... CK} that maximises the 
fitness function f(T,P,C), described in section 3.2, subject to 

•	 C being a partition of U (i.e., Ci ≠ ∅ ∀ Ci ∈ C; ∪i = 1...K 
Ci = U, and Ci ∩ Cj = ∅ ∀ Ci, Cj ∈ C, i ≠ j), 

•	 ∑x ∈ Ci Px ≥ 20,000 ∀ Ci ∈ C, and 

•	 each cluster Ci being geographically continuous.

3.2 Commuting interaction index
To assess the degree of commuting interaction between 

a pair of clusters or BSUs, we use the interaction index 
proposed by Flórez-Revuelta et al. (2008), a generalisation of 
the index used in the TTWA method (Coombes et al., 1986). 
This indicator takes into account the commuting flows in 
both directions as well as the relative size of both areas to 
weight the flows between them. Thus, the flows between 
small interdependent areas are not eclipsed by the flows 
between larger areas. Let the interaction index between two 
clusters II(Ci,Cj) be defined as:

(1)

in which T(Ci,Cj) is the number of commuters from any of 
the BSUs in Ci to any of the BSUs in Cj; Rk = T(Ck, U) is the 
total number of workers residing in Ck; and Jk = T(U,Ck) is 
the total number of jobs in Ck.

3.3 Fitness function
The main objective of maximising the number of identified 

clusters may be directly represented by the number of 
identified clusters. The interaction within clusters may be 
measured with the same fitness function used in Flórez-
Revuelta et al. (2008):

(2)

in which C(i) represents the cluster to which BSU i belongs 
minus the own BSU i, and {i} represents the cluster formed 
by i alone. This function accumulates the interaction value 
between (a) each BSU i and (b) the aggregation of the rest 
of BSUs in the cluster which that specific BSU i is a part of 
(excluding Tii).

In order to include the interaction value in the fitness 
function as a secondary objective, to the number of identified 
areas we add the average global interaction per BSU, with 
values in the range [0, 1] (that in practice are always close 
to  0). Thus, the secondary objective can never force the 
choice of a grouping of n areas over one of (n + 1) areas, but 
different groupings of n areas will have different evaluations, 
depending on the associated interaction levels, and it will 
allow us to choose the one having more within-clusters 
interaction:

(3)

4. Optimisation algorithm
We base our proposal on the grouping evolutionary 

algorithm (GEA) by Martínez-Bernabeu et al.  (2012). This 
type of algorithm, within the family of genetic algorithms 

(Goldberg, 1989), is based on the principles of natural 
evolution and the selection of the fittest. Generally speaking, 
genetic algorithms are stochastic optimisation techniques, 
and the specific class of grouping genetic algorithms 
(Falkenauer,  1998) use tailored genetic operators working 
over an encoding that can represent groupings of elements, 
in this case clusters of municipalities within LMAs.

Departing from an initial population of solutions (called 
individuals), which are codified as numeric chromosomes, 
new solutions are created by combining the current 
individuals (as in sexual reproduction) and applying random 
changes (as in genetic mutations) to the chromosomes. Then, 
the new individuals are evaluated using a fitness function 
and some of them are chosen (using a selection scheme that 
favours solutions with better evaluations) to remain in 
the population for the next iteration (called generation) of 
the algorithm, until a certain stop condition is met. This is 
described in detail in the following subsections, where three 
forms of stochastic selection are used: random (i.e. uniform 
probability), probability proportional to the attraction 
(self-explanatory), and  3-way tournament6 over a certain 
characteristic (attraction, size, etc.).

4.1 Structure of the optimisation algorithm
The structure of the GEA algorithm follows these steps:

1.	 Initialise population: Generate Np valid solutions by 
taking the whole set of BSUs in U as mono-BSU clusters 
and apply the greedy heuristic SHA (described in section 
4.3) over them;

2.	 Evaluate fitness and rank population;

3.	 Repeat until no improvement of the best solution is 
found for Ng generations:

3.1 Apply genetic operators until No new valid individuals 
are produced, as follows:

3.1.1 Select a parent from the current population with a 
probability proportional to the fitness ranking;

3.1.2 Randomly select an operator with uniform 
probability;

3.1.3 If the operator is the crossover, select a second, 
different parent with a probability proportional to the 
fitness ranking;

3.1.4 Create a new individual as a copy of the (first) 
parent;

3.1.5 Apply the selected operator to the new individual;

3.1.6 If the operator terminates successfully, the 
resulting individual is evaluated; otherwise its fitness will 
be set to 0 (invalid);

3.2 Rank individuals in the population by their fitness; and

3.3 From the current pool of previous and new individuals, 
select the Np individuals that will stay in the population for 
the next generation, using selection by ranking with elitism 
for the best.

The Np parameter defines the population size, the No 
parameter controls how many new individuals are generated 
in each generation, and the Ng parameter controls how many 
generations without further improvement will be performed 
before stopping the search. In our application we set Np = 25 
and No = 10 and Ng = 5,000.

3.1. Problem formulation 
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3.2. Commuting interaction index 
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in which T(Ci,Cj) is the number of commuters from any of the BSUs in Ci to any of the BSUs in Cj; Rk = 
T(Ck,U) is the total number of workers residing in Ck; and Jk = T(U,Ck) is the total number of jobs in Ck. 
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practice are always close to 0). Thus, the secondary objective can never force the choice of a grouping of n 
areas over one of (n+1) areas, but different groupings of n areas will have different evaluations, depending 
on the associated interaction levels, and it will allow us to choose the one having more within-clusters 
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In contrast with regular genetic algorithms, the crossover 
and mutation operators are treated equally in a single stage, 
so that No mutations and no crossovers (or vice versa) could 
be applied in a given generation.

4.2 Chromosome representation
We use exactly the same representation as in Martínez-

Bernabeu et al.  (2012), referred to as group-number 
encoding: the chromosome of an individual is a vector of N 
integers (one for each BSU in U), so that the BSUs with the 
same integer value are allocated to the same cluster. This 
representation ensures that the solution is a partition and 
that the corresponding constraints are automatically met 
(that is, each BSU is assigned to one and only one cluster). 
The integer values on each chromosome are forced to 
follow an ascending order to avoid the possibility of having 
different representations for the same partition, so that for 
a partition of x clusters, the first BSU is always assigned to 
group 0, the following BSU allocated to a different group 
will be assigned group 1 (and so on), and the maximum 
group number will be x – 1.

4.3 Stochastic Hierarchical Agglomeration
For the creation of the initial population (step 1 in the 

GEA algorithm, see section 4.1), as well as for the reparation 
of the invalid clusters that may result from the crossover 
operator (described in section 4.4), we adapt the greedy 
heuristic presented in Martínez-Bernabeu et al.  (2012), 
the Stochastic Hierarchical Agglomeration (SHA). This 
algorithm starts from a given partition of a set: one cluster 
per BSU in the case of step 1 of GEA, or the partition 
resulting from the crossover operator (that will normally 
include clusters with several BSUs). Then, it iteratively 
chooses a cluster with population lower than  20,000  and 
another adjacent area with low population, and merges 
them, repeating these steps until all of the clusters have at 
least  20,000  inhabitants. The exact procedure followed in 
this work is as follows:

1.	 Terminate successfully if all the clusters have at 
least 20,000 inhabitants;

2.	 Select a cluster G by 3-way tournament over the inverse 
of population;

3.	 Select a cluster H adjacent to G, with a probability 
proportional to the inverse of its population; and

4.	 Merge clusters G and H and go to step 2.

4.4 Grouping genetic operators
Martínez-Bernabeu et al. (2012) describe ten group-based 

genetic operators: one crossover and nine mutations designed 
to cover all general operations over what in mathematical 
terms are known as disjoint sets. In this study, we have used 
the crossover and only five of those mutation operators (M, 
I, E, D and N), adapted to the particular objectives of our 
specific grouping problem.

This has affected the attraction criteria between pairs of 
clusters: while the original operators use the commuting 
interaction index (eq. 1), to help maximise the main objective 
of LMA definition (interaction within LMAs), our variants 
use the inverse of the summation of both cluster's population, 
to contribute to the maximisation of the number of clusters 
identified, the main objective of the process:

(4)

The following subsections describe the precise algorithms 
of each operator used in this work.

4.4.1 Crossover

This operator is based on the standard grouping 
crossover as described by Falkenauer  (1998). A random 
selection of clusters from one parent is copied over 
the other, changing the codification so that none of the 
copied clusters share their code number with any of those 
already present in the recipient parent. The integrity of 
the copied clusters is maintained while the clusters of 
the other parent sharing BSUs with them can became 
invalid in terms of size or contiguity. Any non-continuous 
cluster is fragmented into (smaller) contiguous clusters. 
Then, the SHA procedure (see section  4.3) is applied to 
all individuals, so that invalid fragments of clusters are 
merged with adjacent clusters until they are all valid. This 
procedure can also modify the initially preserved clusters 
(those that absorb other invalid clusters):

1.	 Copy all of the information from the first parent into the 
child;

2.	 Randomly select a number r with uniform distribution 
between  1  and  66% of the amount of clusters in the 
second parent;

3.	 Randomly select r distinct clusters from the second 
parent and copy them into the child, changing the 
codification so that none of that clusters share their code 
with any cluster in the offspring;

4.	 Check each cluster and divide those clusters that are not 
continuous into their continuous parts;

5.	 Apply SHA over all of the clusters of the child (reparation 
of broken clusters from the first parent); and

6.	 Terminate successfully.

4.4.2 Mutation M: random re-allocations

This operator randomly selects border7 BSUs with low 
interaction in their clusters, and attempts to re-allocate them 
to other adjacent clusters. This is the operator closer to the 
concept of standard mutation in general genetic algorithms:

1.	 Randomly select a number r between  1  and  2% of the 
total number of BSUs;

2.	 Repeat r times:

2.1 Choose a border BSU i with low attraction with its 
micro-area Ci by 3-way tournament;

2.2 Select a cluster Cj adjacent to i, with probability 
proportional to the attraction to I;

2.3 Re-allocation of i from Ci to Cj if both clusters continue 
being valid; and

3.	 If at least one effective re-allocation occurred, terminate 
successfully; otherwise terminate unsuccessfully.

4.4.3 Mutation I: inclusion into a cluster of adjacent 
BSUs

This operator attempts to increase the size of a cluster 
with a low population by absorbing some of the adjacent, 

7 A border BSU is one that is adjacent to at least one cluster other than the one that it is currently part of.
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and 
 4 Merge clusters G and H and go to step 2. 

4.4. Grouping genetic operators 

Martínez-Bernabeu et al. (2012) describe ten group-based genetic operators: one crossover and nine 
mutations designed to cover all general operations over what in mathematical terms are known as disjoint 
sets. In this study, we have used the crossover and only five of those mutation operators (M, I, E, D and N), 
adapted to the particular objectives of our specific grouping problem. This has affected the attraction
criteria between pairs of clusters: while the original operators use the commuting interaction index (eq. 1), 
to help maximise the main objective of LMA definition (interaction within LMAs), our variants use the 
inverse of the summation of both cluster's population, to contribute to the maximisation of the number of 
clusters identified, the main objective of the process: 

a (C x ,C y)=
1

∑
i∈C x

Pi+∑
i∈C y

Pi

(4) 

The following subsections describe the precise algorithms of each operator used in this work.  

4.4.1. Crossover 

This operator is based on the standard grouping crossover as described by Falkenauer (1998). A random 
selection of clusters from one parent is copied over the other, changing the codification so that none of the 
copied clusters share their code number with any of those already present in the recipient parent. The 
integrity of the copied clusters is maintained while the clusters of the other parent sharing BSUs with them 
can became invalid in terms of size or contiguity. Any non-continuous cluster is fragmented into (smaller) 
contiguous clusters. Then, the SHA procedure (see section 4.3) is applied to all individuals, so that invalid 
fragments of clusters are merged with adjacent clusters until they are all valid. This procedure can also 
modify the initially preserved clusters (those that absorb other invalid clusters): 
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unnecessary8 BSUs into the surrounding clusters with 
which it shares higher interaction (the opposite of the 
mutation E):

1.	 Select a cluster Ci with low population by  3-way 
tournament;

2.	 Randomly select a number r between 1 and 10% of the 
average number of BSUs per cluster;

3.	 Repeat r times:

3.1 Select a BSU i adjacent to Ci and belonging to a cluster 
Cj ≠ Ci with a probability proportional to the attraction to Ci;

3.2 Re-allocate i from Cj to Ci if both clusters continue 
being valid; and

4.	 If at least one effective re-allocation occurred, terminate 
successfully; otherwise terminate unsuccessfully.

4.4.4 Mutation E: exclusion of border BSUs with 
high external attraction from a cluster

This operator attempts to reduce the size of a large cluster 
by choosing some border BSUs with lower interaction with 
the rest of the cluster to which it is currently assigned and 
reassigning them to other related, adjacent clusters. Its 
process is inverse to that of mutation I:

1.	 Select a cluster Ci of high population by 3-way tournament;

2.	 Randomly select a number r between 1 and 20% of the 
amount of BSUs in Ci;

3.	 Repeat r times:

3.1 Select a border BSU i from Ci having a low population 
by 3-way tournament;

3.2 Select a cluster Cj adjacent to i with a probability 
proportional to the attraction to I; 

3.3 Re-allocate i from Cj to Ci if both clusters continue 
being valid; and

4.	 If at least one effective re-allocation occurred, terminate 
successfully; otherwise terminate unsuccessfully.

4.4.5 Mutation D: dismembering of a cluster and 
assignation of its constituent BSUs to the adjacent 
clusters

This operator uses the same mechanism as in mutation E, 
but finishes only when the cluster disappears. This operator 
will always reduce the number of clusters by one, worsening 
the fitness value, but this may allow that subsequent 
operations find a better solution and help the search process 
to escape from a local maximum:

1.	 Select a cluster Ci with low population by3-way tournament;

2.	 Repeat until there are no remaining BSUs in Ci:

2.1 Select a border BSU i from Ci with low population by 
3-way tournament;

2.2 Select a cluster Cj adjacent to i with a probability 
proportional to the attraction to I;

2.3 Re-allocate i from Ci to Cj if Cj continues being valid after 
the re-allocation, otherwise terminate unsuccessfully; and

3.	 Terminate successfully.

4.4.6 Mutation N: creation of a new cluster using a 
border BSU as seed

This operator chooses an unnecessary, border BSU in a 
cluster of low population, creates a new cluster from that 
BSU, and then tries to absorb other unnecessary, adjacent 
BSUs from surrounding clusters, until the new cluster 
reaches the minimum population or there are no more 
available BSUs to absorb:

1.	 Select a cluster Ci with a high population by  3-way 
tournament;

2.	 Select an unnecessary, border BSU i from Ci with a low 
population by 3-way tournament. If it cannot be found, 
terminate unsuccessfully;

3.	 Create a new cluster Cj conformed by I;

4.	 Repeat while population of Cj is smaller than 20,000:

4.1 Select BSU k from the BSUs adjacent to Cj, with a 
probability proportional to the attraction to Cj;

4.2 Re-allocate k from its cluster Ck to Cj if Ck continues 
being valid after the re-allocation, otherwise terminate 
unsuccessfully; and

5.	 Terminate successfully.

5. Results
Of the  260  LMAs which, according to the objective of 

this article, should be divided into clusters,  86  already 
had a population of less than  40,000  inhabitants, and 
therefore a subdivision was not possible. Thus, the grouping 
technique described in this paper was applied to the 
remaining  174  LMAs whose populations exceeded  40,000 
inhabitants. Of these, 21 LMAs could not be divided because 
one of the BSUs concentrated most of the population and 
any grouping of the remaining BSUs could not reach the 
minimum of  20,000  inhabitants (10  cases), or because they 
were formed by only one BSU (2  cases: the cities of Ceuta 
and Melilla, in the north of Africa), or because the contiguity 
restriction did not allow for a proper division (9 cases). The 
remaining 153 LMAs were divided into 824 clusters (totalling 
931 clusters with the undivided LMAs9). As expected, the 
LMAs that were sub-divided into a larger number of clusters 
are those centred in the largest metropolitan areas: Madrid 
(with 60 clusters), Barcelona (34), Valencia (32), Terrassa (32), 
Sevilla (22) and Bilbao (22).

To assess the extent to which the results increase and 
improve the territorial detail of the original reference 
geography of municipalities grouped in ranges of population, 
we have compared both regionalisations. Figure 1 depicts the 
geography that currently serves as a territorial reference in the 
conventionally distributed Census microdata, as described in 
Section 1. Such geography consists of the 402 municipalities 
whose population exceeds  20,000  inhabitants (coloured 
in dark blue), plus the within-province aggregation of the 
remaining municipalities into groups according to their 
population range (these groups have been coloured in blue 
shades according to the specific population group to which 
their municipalities belong10). The combination of both 
territorial references (large municipalities plus the within-

8 An unnecessary BSU is one that can be re-allocated to another cluster without breaking the constraints of minimum population 
and contiguity.

9 These clusters include one for which the population minimum is not reached: El Hierro (in the Canary Islands). This is a very 
specific case whose separate consideration is justified since it is the only populated island not reaching the minimum population 
threshold, despite being one of the territories with higher self-containment levels.

10 It is noticeable that 28 of such population-range sub-provincial clusters have in fact less than 20,000 inhabitants.
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province population groups) results in the  587  clusters 
that are presented in Figure  1. It is noticeable that in 
many provinces, one specific cluster (that consisting of the 
municipalities under  2001  inhabitants) covers most of the 
area, and that, in general, clusters based on population 
ranges are formed by fragmented parts among which 
distances may be very large.

On the other hand, Figure  2 shows the  931  clusters 
of municipalities obtained with our methodology, which 
as previously noted, has been applied within each of the 
LMAs defined in a previous article (the colour scale reflects 
the clusters’ population levels). In this regionalisation, 
only  171  clusters are formed by a single municipality. 
Figure  3  focuses on a specific example: the province of 

Fig. 1: Geographic reference currently in use in the Spanish Census microdata file 2011. Source: Authors’ results 
based on data from the Spanish Census of Population 2011 (Instituto Nacional de Estadística, INE). Notes: Black 
lines mark provincial boundaries. Microdata are currently referenced to 587 regions (402 individual municipalities 
whose population exceeds 20,000 inhabitants – marked in the Figure with the darkest shade – plus within-province 
groupings of the remaining municipalities according to the population ranges depicted in the Figure’s legend – 
within each province municipalities marked with the same colour belong to one cluster)

Fig.  2: The proposed geography. Source: Authors’ results based on data from the Spanish Census of Population 2011 
(Instituto Nacional de Estadística, INE). Notes: Black lines mark LMAs’ boundaries. Grey lines mark clusters’ boundaries 
(all clusters are formed by continuous municipalities). The colour scale characterises each cluster according to its population
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Barcelona. This figure illustrates how clusters are structured 
at a municipality level. Thus that figure shows the actual 
groupings of municipalities within each cluster of the 
approximately six LMAs that cover the province.

Morphologically, we see four relevant differences 
between the original regionalisation (Figure  1) and our 
results (Figures 2 and 3): (a) our proposal involves a great 
increase in the microdata territorial detail since it consists 
of almost  60% more regions, that are more comparable in 
terms of area; (b) specifically, our proposal divides the large 
clusters of municipalities that almost completely cover some 
of the Spanish inner provinces in the current geography 
into several clusters; (c) many of the municipalities that 
form a singleton cluster in the currently-used geography are 
grouped with other smaller municipalities in our proposal, 
although none of them becomes considerably large; and 
(d) all of the clusters in our proposal are contiguous. And, 
obviously given the design of the methodology applied, the 
clusters of our proposal honours the boundaries of the LMAs 
of this study.

To complete the description of the proposed geography 
and its comparison with that which is currently in use, 
Tables 1 and 2, respectively, depict the number of clusters by 
area and population intervals. Each table includes, for each 

regionalisation (the one currently used and the geography 
proposed here), one column with information for all clusters 
and a second column in which only the clusters that group at 
least two (2) municipalities are considered (this column has 
been labelled “> 1 municipalities”).

As shown in both tables, the regionalisation resulting from 
the method applied in this article offers a much higher level 
of territorial detail. Thus, in Table  1, it is noticeable that 
while in the currently-used geography, 19 clusters have an 
area over 6,000 km², this threshold is not exceeded in any of 
the clusters included in our proposal, and only 6 clusters are 
over 4,000 km², so that microdata records can be referenced 
to smaller, more specific geographical places. In terms of 
population (Table 2), the proposed geography of clusters also 
involves a great increase in the level of detail. In this case, 
most of the gain (compared with the current geography) 
occurs in the range between 60,000 and 300,000 inhabitants. 

Thus the current territorial division has  335  clusters 
in the range of  20,000  to  60,000  inhabitants (i.e. 57% of 
clusters), whereas in our proposal 793 clusters (85.2%) fall 
within that interval. On the other hand, the geography 
currently in use includes 209 clusters in the range of 60,001 
to  300,000  (35.6% of clusters), while our proposal reduces 
that number to 123 (13.2%). In comparison, the number of 

Fig. 3: The proposed geography. Detail of the province of Barcelona. Source: Authors’ results based on data from 
the Spanish Census of Population 2011 (Instituto Nacional de Estadística, INE). Notes: Red line marks provincial 
boundaries. Black lines mark LMAs’ boundaries. Darker grey lines mark clusters’ boundaries (all clusters are 
formed by continuous municipalities). Municipality boundaries in light grey lines. The colour scale characterises 
each cluster according to its population
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Land area intervals
Proposed geography Currently used geography

All > 1 municipalities All > 1 municipalities

< 1,000 773 602 478 84

1,000–2,000 96 96 47 39

2,000–3,000 36 36 15 15

3,000–4,000 20 20 16 16

4,000–5,000 3 3 8 8

5,000–6,000 3 3 4 4

6,000–7,000 0 0 5 5

7,000–8,000 0 0 1 1

8,000–9,000 0 0 1 1

9,000–10,000 0 0 2 2

10,000–11,000 0 0 2 2

11,000–12,000 0 0 2 2

12,000–13,000 0 0 4 4

13,000–14,000 0 0 1 1

> 14,000 0 0 1 1

Total 931 760 587 185

Population intervals
Proposed geography Currently used geography

All > 1 municipalities All > 1 municipalities

< 20001 1 1 28 19

20,001–40,000 706 623 246 29

40,001–60,000 87 64 89 38

60,001–80,000 41 20 64 27

80,001–100,000 31 17 54 27

100,001–120,000 10 6 22 15

120,001–140,000 10 4 16 7

140,001–160,000 2 2 10 5

160,001–180,000 7 4 7 1

180,001–200,000 7 3 11 5

200,001–220,000 5 3 13 6

220,001–240,000 4 3 6 2

240,001–260,000 5 3 2 0

260,001–280,000 0 0 2 1

280,001–300,000 1 0 2 1

300,001–350,000 5 4 4 0

350,001–400,000 1 0 2 1

400,001–500,000 2 1 2 0

500,001–750,000 3 2 4 1

750,001–1,000,000 1 0 1 0

1,000,001–2,000,000 1 0 1 0

> 2,000,000 1 0 1 0

Total 931 760 587 185

Tab.  1: Number of clusters by area intervals (km2). Currently used and proposed geographies. Source: authors’ 
results based on data from the Spanish Census of Population 2011 (Instituto Nacional de Estadística, INE).

Tab.  2: Number of clusters by population intervals. Currently used and proposed geographies. Source: authors’ 
results based on data from the Spanish Census of Population 2011 (Instituto Nacional de Estadística, INE). Note: 
see footnotes 9 and 10 for group < 20,001.
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clusters with the largest populations, which in most cases 
correspond to the main cities (already classified as single-
municipality clusters), reveals few differences between both 
regionalisations.

6. Conclusions
This paper deals with a problem that is frequently seen 

when microdata from different statistical operations are 
made available for academic research and other uses: the lack 
of territorial detail derived from sampling or confidentiality 
restrictions. More specifically, microdata frequently refer to 
large units such as regions or provinces (NUTS 2 or NUTS 3 
in the EU terminology) geographical levels that hamper 
detailed territorial analyses. When lower-level administrative 
units are included in the diffusion programmes, they are 
typically subject to a minimum population restriction. The 
microdata file associated with the Census of Population 2011 
in the Spanish case exemplifies this situation: while the 
geography currently in use includes the specification of 
a local territorial reference in the case of municipalities 
over  20,000  inhabitants, the remaining municipalities are 
grouped within each province into a maximum of four clusters 
depending on the population interval to which they belong.

In this article we propose an approach in which a new 
geography is produced. This partition of the territory is 
designed to maximise the number of identified clusters 
of municipalities (so that the detail of the territorial 
reference used in the microdata file is increased), each of 
which exceeds a certain minimum population level, with 
the maximisation of the commuting links between the 
municipalities that constitute each cluster acting as a 
secondary objective. Such clusters are identified as sub-
divisions of a pre-existing set of LMAs (Martínez-Bernabeu 
et al.,  2016). To achieve that goal, we have designed a 
new method based on a novel optimisation approach 
recently applied in the field of functional regionalisation, 
an evolutionary optimisation technique (GEA: Martínez-
Bernabeu et al., 2012) previously used to define the LMAs. 
In this study, we have adapted the fitness function and the 
search operators of this technique to adapt to the objectives 
and restrictions of this specific problem.

The results, an application of the approach to the 
Spanish case, are designed to increase the territorial detail 
in the 2011 Census of Population microdata file to permit 
a more accurate analysis of the labour market at local 
levels. The resulting geography consists of  931  clusters 
of municipalities. Some of them (approximately  400) are 
roughly similar to the ones currently used (they basically 
correspond to municipalities exceeding the  20,000 
inhabitants threshold). The rest (more than  500) are 
subdivisions of the 185 clusters that in the currently-used 
territorial division are formed by the aggregation of the 
municipalities with less than 20,000  inhabitants into four 
groups within each province. The new clusters are logically 
characterised by lower figures of both population and area, 
and allow for an increase in territorial resolution in the 
microdata file, while respecting the statistical constraints 
established by the National Institute of Statistics for the 
diffusion of individual data.

Since the new clusters have been conceived as sub-
divisions of the Spanish LMAs, this new regionalisation also 
permits an analysis at the level of LMAs (Martínez-Bernabeu 
et  al.,  2016), in contrast with the reference geography 
currently included in the microdata file, in which many of 
the clusters of municipalities are not contiguous and the 

diverse parts of the clusters are frequently separated by large 
distances. Moreover, pre-existing clusters have excessively 
(and unnecessarily) large areas and/or populations, and most 
of them consist of municipalities from different LMAs, to 
the detriment of an analysis of the interactions between and 
within LMAs. None of these drawbacks are present in the 
alternative regionalisation presented in this article. Moreover, 
if subsequent analyses find it useful, this subdivision of 
the territory into smaller clusters would allow for minor 
adjustments of the LMAs’ boundaries. A forthcoming step 
in this research programme will involve the inclusion of 
the clusters’ territorial codes in the Census 2011 microdata 
dataset for the seven variables listed previously, and its use 
in the analysis of commuting and migration behaviour at an 
individual level, as well as the analysis of the influence of the 
characteristics of the LMA/cluster of residence on the labour 
market outcomes of such individuals.

Finally, one incidental contribution of this article is the 
illustration of how the GEA (Martínez-Bernabeu et al., 2012) 
algorithm, originally designed for the delineation of LMAs, 
may be easily adapted to other related contexts through the 
modification of its fitness function and restrictions, according 
to the nature of the specific instance of regionalisation to 
which it is applied.

Acknowledgement
This work was supported by the Spanish Ministry of 

Economy and Competitiveness (grant number CSO2014-
55780-C3-2-P, National R&D&i Plan 2013-2016). Census 
data were provided by the Instituto Nacional de Estadística 
(INE), an institution that is not responsible for the use of such 
data in this research.

References:
ALONSO, M. P., BEAMONTE, A., GARGALLO, P., 

SALVADOR, M. (2015): Local labour markets delineation: 
an approach based on evolutionary algorithms and 
classification methods. Journal of Applied Statistics, 
42(5): 1043–1063.

BALAS, E., PADBERG, M. W.  (1976): Set partitioning: A 
survey. SIAM review, 18(4): 710–760.

BARNHART, C., COHN, A. M., JOHNSON, E. L., KLABJAN, 
D., NEMHAUSER, G. L., VANCE, P. H.  (2003): Airline 
crew scheduling. In Handbook of transportation science. 
New York, Springer US, 517–560.

CHAKRABORTY, A., BEAMONTE, M. A., GELFAND, A. E., 
ALONSO, M. P., GARGALLO, P., SALVADOR, M. (2013): 
Spatial interaction models with individual-level data for 
explaining labor flows and developing local labor markets. 
Computational Statistics and Data Analysis, 58: 292–307.

COCKINGS, S., HARBOOT, A., MARTIN, D., HORNBY, 
D. (2011): Maintaining existing zoning systems using 
automated zone-designed techniques: methods for 
creating the 2011 Census output geographies for England 
and Wales. Environment and Planning A, 43: 2399–2418.

COOMBES, M., BOND, S.  (2008): Travel-To-Work Areas: 
the 2007 Review. London, Office for National Statistics.

COOMBES, M., GREEN, A., OPENSHAW, S.  (1986): 
An efficient algorithm to generate official statistical 
reporting areas: The case of the  1984  travel-to-work 
areas revision in Britain. Journal of the Operational 
Research Society, 37: 943–953.



MORAVIAN GEOGRAPHICAL REPORTS	 2016, 24(2)

36

MORAVIAN GEOGRAPHICAL REPORTS	 2016, 24(2): 26–36

36

FALKENAUER, E. (1998): Genetic Algorithms and Grouping 
Problems. New York: John Wiley & Sons.

FLÓREZ-REVUELTA, F., CASADO-DÍAZ, J. M., 
MARTÍNEZ-BERNABEU, L.  (2008): An evolutionary 
approach to the delineation of functional areas based 
on travel-to-work flows. International Journal of 
Automation and Computing, 5(1): 10–21.

FORTUNATO, S., BARTHELEMY, M.  (2007): Resolution 
limit in community detection. Proceedings of the 
National Academy of Sciences, 104: 36–41.

GOLDBERG, D. E.  (1989): Genetic Algorithms in Search, 
Optimization, and Machine Learning. Addison, Wesley.

ISTAT  (1997): I Sistemi Locali Del Lavoro  1991. Rome, 
Istituto Nazionale di Statistica.

ISTAT  (2005): I Sistemi Locali Del Lavoro  2001. Rome, 
Istituto Nazionale di Statistica.

ISTAT (2014): Sistemi Locali Del Lavoro. Nota metodologica. 
Rome, Instituto Nazionale di Statistica [online]. 
Available at: http://www.istat.it/it/files/2014/12/nota-
metodologica_SLL2011_rev20150205.pdf

LANCICHINETTI, A., FORTUNATO, S.  (2011): Limits 
of modularity maximization in community detection. 
Physical Review E, 84: 066122.

LEVINE, D. (1996): A parallel genetic algorithm for the set 
partitioning problem. New York, Springer US, 23–35.

LAPORTE, G.  (1992): The vehicle routing problem: An 
overview of exact and approximate algorithms. European 
Journal of Operational Research, 59(3): 345–358.

MARTIN, D. (2000): Towards the geographies of the 2001 UK 
Census of Population. Transactions of the Institute of 
British Geographers, New Series, 25: 321–332.

MARTÍNEZ-BERNABEU, L., CASADO-DÍAZ, J. M., 
FLÓREZ-REVUELTA, F. (2016): Improving the objective 
and constraint functions in optimisation-based functional 
regionalisation methods. Mimeo.

MARTÍNEZ-BERNABEU, L., FLÓREZ-REVUELTA, 
F., CASADO-DÍAZ, J. M.  (2012): Grouping genetic 
operators for the delineation of functional areas based 
on spatial interaction. Expert Systems with Applications, 
39(8): 6754–6766.

NEWMAN, M. E. J., GIRVAN, M.  (2004): Finding and 
Evaluating Community Structure in Networks. Physical 
Review E,  69:  026113. doi: http://dx.doi.org/10.1103/
PhysRevE.69.026113

ONS  (2015): Methodology note on  2011 Travel to Work 
Areas. London: Office for National Statistics [online]. 
Available at http://www.ons.gov.uk/ons/guide-method/
geography/beginner-s-guide/other/travel-to-work-areas/
index.html

OPENSHAW, S. (1977a): A geographical solution to scale and 
aggregation problems in region-building, partitioning 
and spatial modelling, Transactions of the Institute of 
British Geographers, New Series, 2: 459–472.

OPENSHAW, S.  (1977b): Algorithm  3: a procedure to 
generate pseudo-random aggregations of N zones into 
M zones, where M is less than N, Environment and 
Planning A, 9: 1423–1428

OPENSHAW, S., RAO, L.  (1995): Algorithms for re-
engineering 1991 Census geography, Environment and 
Planning A, 27: 425–446.

SMART, M. W.  (1974): Labour market areas: uses and 
definition. Progress in Planning, 69: 238–353.

TOTH, P., VIGO, D.  (2001): The vehicle routing problem. 
Philadelphia, US, Society for Industrial and Applied 
Mathematics (SIAM).

Please cite this article as:

MARTÍNEZ-BERNABEU, L., CASADO-DÍAZ, J. M.  (2016): Delineating zones to increase geographical detail in individual response data 
files: An application to the Spanish 2011 Census of population. Moravian Geographical Reports, 24(2): 26–36. Doi: 10.1515/mgr-2016-0008.



2016, 24(2)	 MORAVIAN GEOGRAPHICAL REPORTS

37

2016, 24(2): 37–46	 MORAVIAN GEOGRAPHICAL REPORTS

37

Institute of Geonics, The Czech Academy of Sciences

journal homepage: http://www.geonika.cz/mgr.html

doi: 10.1515/mgr-2016-0009

MORAVIAN GEOGRAPHICAL REPORTS
 

MORAVIAN
GEOGRAPHICAL  REPORTS

Vol. 23/2015                     No.  4

Illustrations to the paper by S. Kurek et al.

Figures 8, 9: New small terrace houses in Wieliczka town, the Kraków metropolitan area (Photo: S. Kurek)

A functional interaction approach to the definition  
of meso regions: The case of the Czech Republic

Martin ERLEBACH a *, Martin TOMÁŠ a, Petr TONEV b

Abstract
The definition of functional meso regions for the territory of the Czech Republic is articulated in this article. 
Functional regions reflect horizontal interactions in space and are presented as a useful tool for various types 
of geographical analyses, and also for spatial planning, economic policy designs, etc. This paper attempts to 
add to the discussion on the need to delineate areal units at different hierarchical levels, and to understand 
the functional flows and spatial behaviours of the population in a given space. Three agglomerative methods 
are applied in the paper (the CURDS regionalisation algorithm, Intramax, and cluster analysis), and they 
have not been used previously in Czech geography for the delineation of functional meso regions. Existing 
functional regions at the micro-level, based on daily travel-to-work flows from the 2001 census, have served 
as the building blocks. The analyses have produced five regional systems at the meso level, based on daily 
labour commuting movements of the population. Basic statistics and a characterisation of these systems are 
provided in this paper.
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1. Introduction
The definition of functional regions has played an 

important role in geographical and spatial research for 
several decades. The organisation of a space is crucial for 
an understanding of and an explanation for socio-economic 
phenomena, and is necessary for the needs of regional 
development, territorial planning and the implementation 
of regional policies. Functional regions based on daily 
travel-to-work flows appear to be a very useful tool in 
finding a solution to a number of socio-economic issues, 
unlike administrative or political areal units, which often 
ignore real geographic functional linkages. Suitably-defined 
functional regions for a particular research task can avoid 
the spatial bias caused by the incorrectly defined borders 
of administrative units (Wong,  2009). In many OECD 
countries, functional regions are used as statistical units for 
various analyses (OECD, 2002).

Geographic research often works on various hierarchical 
levels. The definition of functional regions is no exception 
(Drobne and Bogataj, 2012; Halás et al., 2014a). Functional 
regions defined at various hierarchical levels can be used to 
solve different socio-economic problems. Functional regions 

can be understood as the spatial delineation of the spheres 
of influence of settlement system centres. These centres are 
hierarchically organised according to their significance (size, 
function), and, obviously, so are the functional regions. In 
this respect, meso regions identify the spheres of influence 
of meso regional centres in a settlement system, in this case 
the Czech Republic. Functional regions at the micro level, 
such as local labour market areas (LLMA) (Ball, 1980), can 
be used for labour market analyses, the implementation of 
local employment policies and the identification of regional 
disparities, while functional regions at the meso level can 
serve as a tool for regional planning (regional development 
strategies).

The definition of functional meso regions and the 
identification of the main intraregional interactions can also 
benefit the optimisation of transport systems of a regional 
and inter-regional importance. Variants of functional meso 
regions discussed in this paper conform to the NUTS  2 
definitions, possibly to the NUTS 3 level in terms of their 
size. The definition of NUTS regions, however, is based on 
administrative concepts, unlike the presented variants of 
functional meso regions. Presently, meso regions (NUTS 3 

http://www.geonika.cz/mgr.html
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and 2 levels) are used for the implementation of particular 
EU policies. Each hierarchical level of a functional region 
can be suitable for the solution of various tasks, therefore it 
is important to differentiate between them.

The daily rhythm of population movements, particularly 
daily travel-to-work flows, is a determinative process in 
the formation of regional systems at the micro level. Based 
on their flow patterns and further criteria, various types 
of functional regions can be defined (Klapka et al.,  2013a; 
Erlebach et al., 2014). Similarly, as in the case of the definition 
of functional micro regions, daily travel-to-work flows are 
also determinative for the identification of functional meso 
regions (Halás et al.,  2014b). The daily labour commuting 
rhythm (daily travel-to-work flows) is an aggregation of 
the regular movements of individuals, describing spatial 
behaviours for a considerable part of the population. These 
movements are relatively stable over time (unlike travel for 
retail services, for example). The frequency of retailing trips 
and commuting for services, however, is decreasing and they 
can no longer be considered as regular daily movements 
(Halás and Zuskáčová, 2013; Halás et al., 2014b).

The main objective of this paper is to define meso regions 
for the territory of the Czech Republic, using several 
acknowledged functional interaction approaches. Micro 
regions (functional regions based on daily travel-to-work 
flows from the  2001 census, variant FRD  2B) defined by 
Klapka et al.  (2014), serve as the building blocks for the 
analyses presented. A subsequent objective of the paper is 
to apply three methods for the definition of functional meso 
regions, which either were not applied in the Czech Republic 
at all, or were used only to define functional micro regions. 
The first method applies the adjusted variant of the CURDS 
regionalisation algorithm to the delimitation of LLMAs 
(Coombes, et al., 1986; Coombes, 2010). The second method 
applies the Intramax regionalisation procedure (Masser 
and Brown, 1975). The third method uses the approach of 
a general cluster analysis (e.g. Ward, 1963). The paper also 
provides the relevant characteristics for, and an assessment 
of the resulting meso regional systems (see for example, 
Klapka et al., 2014; Konjar et al., 2010).

2. Functional regions and methods 
for their definition

The term functional region was introduced into 
geography in the second half of the  20th century 
(Philbrick, 1957; Nystuen and Dacey, 1961; Haggett, 1965). 
The term was inspired by the theories and work of 
spatial economists (von Thünen,  1826; Christaller,  1933; 
Lösch,  1940; Isard,  1956). Since then the concept of a 
functional region has gone through many adjustments 
(Sýkora and Mulíček, 2009). The primary characteristics of 
a functional region are its size and its self-containment in 
relation to its surroundings (Coombes et al., 1986; Casado-
Díaz, 2000; Klapka et al., 2013a). Size can be expressed as 
the population, the number of jobs or some other relevant 
criterion. Self-containment requires the maximising of the 
flows within a particular region: at least 50% of the flows 
incident to a region should occur within its boundaries 
(Smart, 1974; Farmer and Fotheringham, 2011).

The research literature also provides slightly different 
views on the definition of a functional region. The 
OECD (2002) sees it as an areal unit based on socio-economic 
linkages, regardless of historical and physical geographical 
conditions. Karlsson and Olsson  (2006) see a functional 

region as an area with a high frequency of socio-economic 
interactions which occur within the region. Similarly, Sýkora 
and Mulíček (2009) see a functional region as an area which 
contains the integrated socio-economic activities of the 
population. In the geographical literature, several specific 
types of functional regions can be observed, based on specific 
characteristics, particularly regarding the type and pattern 
of region-organising interaction.

The first such instance is a functional urban region 
(FUR), which is determined by the specific character of 
its core (Bezák,  2000; Karlsson and Olsson,  2006). A core 
should have an urban character in this case and interactions 
should be directed at this core. A similar instance, often 
confused with the former, is a daily urban system  (DUS). 
Daily urban systems (Berry,  1973) are based on a more 
complex concept of the limits of a spatial economy (coherence 
and self-containment), where differences between a core 
and its adjacent hinterland are less distinct (Hall and 
Hay, 1980). Unlike the preceding type, DUS is based on daily 
interactions, and the daily rhythm of flows is significant. 
Local labour market areas (LLMA) and travel-to-work areas 
(TTWA) are almost near-synonyms. Local labour market 
areas (Smart, 1974) are considered to have a slightly wider 
meaning than travel-to-work areas (Ball, 1980). They need 
not necessarily be based on labour commuting, but in 
practice they are, almost without exception. Travel-to-work 
areas directly refer to the region-organising process, while 
local labour market areas first refer to their applied use, 
such as labour market analysis and the implementation of 
labour market policy (Tonev, 2013).

Basically, three approaches to the definition of functional 
regions can be identified: a) a graph-theoretic approach; 
b) a numerical taxonomy approach; and c) a rule-based 
approach. Graph-theoretic methods are based on the 
analysis of significant flows and have a long tradition in 
geographical research (Nystuen and Dacey,  1961; Holmes 
and Haggett,  1977). The graph-theoretic approach has 
even been used in some recent regionalising tasks, albeit 
in its more sophisticated form (Karlsson and Olsson, 2006; 
and recently via three-step procedure by Kropp and 
Schwengler,  2014). Methods of numerical taxonomy (e.g. 
Brown and Holmes, 1971; Masser and Brown, 1975) are based 
on the analysis of functional (taxonomic) distances. The rule-
based / multistage methods were proposed, for example, by 
Smart  (1974) and Coombes, et al.  (1982,  1986). The latter 
proposal represents a relatively complex regionalisation 
algorithm which has probably had the greatest response 
from geographical researchers (see Casado-Díaz,  2000; 
Papps and Newell,  2002; Drobne et al.,  2009; Konjar 
et  al.,  2010; Bezák,  2000; Halás et al.,  2014a, b; Klapka 
et  al.,  2013b,  2014; Tonev,  2013). Application of the latter 
two approaches is a part of this contribution.

All approaches have their pros and cons (see for 
example, Coombes,  2010; Mitchell and Watts,  2010; 
Landré,  2012; Landré and H�kansson,  2013). Clustering 
methods (numerical taxonomy methods) are based on a 
selected criterion, which is gradually decreased until all 
the resulting regions meet it (Watts, 2009). The Intramax 
procedure is seen by Masser and Scheurwater  (1980) as 
a suitable method for the analyses of large data sets and 
the amalgamation of regions on the basis of the strongest 
links, without their dissolution during later stages of 
analysis. On the other hand, these methods are not able 
to make amendments during the running of the procedure. 
Multistage methods are able to set several criteria for each 
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step in a procedure and to control the required size and self-
containment of the resulting regions (Coombes et al., 1986; 
Coombes, 2010; Casado-Díaz, 2000; Halás et al., 2015).

3. Procedures
The first step in the analysis was to identify the basic 

building blocks (basic spatial units) to be amalgamated into 
meso regions. All four variants of functional micro regions 
as defined by Klapka et al.  (2014) were tested using three 
different regionalisation methods. An extensive set of the 
systems of functional meso regions resulted from the analysis. 
For the purposes of this paper, five variants of functional 
meso regions were selected on the basis of maximising 
the total self-containment of respective regional systems. 
All of these five variants were based on the functional 
micro regional system FRD  2B (Klapka et.  al.,  2014); its 
characteristics are presented in Table 1, where the β1 and 
β2 values determine the lower and upper limits of the self-
containment of functional micro regions, and the β3 and β4 
values determine the lower and upper limits of the size of 
functional micro regions.

For further analysis, these functional micro regions 
were arranged into a square interaction matrix (98 × 98 
cells), which stored intra-regional and inter-regional flows. 
This matrix was the basis for the application of the three 
regionalisation approaches.

3.1 The local labour market area approach
The most well-known and acknowledged multistage 

procedure for defining functional regions (local labour 
market areas in this case) was developed by the Centre for 
Urban and Regional Development Studies (CURDS), see 
Coombes et al.,  1982, 1986), and Coombes  (2010). In this 
paper its adjusted third variant (Coombes and Bond, 2008; 
Coombes,  2010) has been applied. The adjustments are 
discussed in Halás et al.  (2015). The third variant has a 
more general hierarchical clustering character – from the 
beginning of the procedure it considers all basic spatial 
units as proto-regions. A successful solution is identified 
through the use of the constraint function, which controls 
the trade-off between the self-containment and the size of 
resulting regions, where the upper and lower limits of self-
containment and size are set by the researcher. The values 
for these four parameters (β1, β2, β3 and β4) have resulted 
from extensive testing and are presented in Table  2. The 
size parameter is based on the number of employed persons. 
The amalgamation of basic spatial units (proto regions) is 
based on Smart’s measure (Smart, 1974), which is expressed 
by the formula:

(1)

where Tij is the flow from spatial unit i into spatial 
unit j, Tji is the flow from spatial unit j to spatial unit i, 
∑kTik denotes all out-going flows from i, ∑kTkj denotes 
all in-going flows to j, ∑kTjk denotes all out-going flows 
from j, and ∑kTki denotes all in-going flows to i. After 
each amalgamation the interaction matrix is updated. An 
indisputable benefit of this method is that it is possible to 
set and adjust input parameters for the need to optimise 
the resulting regional systems.

3.2 The Intramax approach
The second approach to defining functional meso 

regions in this paper is based on maximising intra-
regional flows  –  Intramax (Masser and Brown,  1975). The 
Intramax algorithm identifies functional regions through 
the hierarchical aggregation of basic spatial units, with the 
objective of forming homogeneous clusters (Landré,  2012). 
The interaction measure is used as an objective function in 
the hierarchical clustering algorithm and it can be expressed 
by the formula:

(2)

The Intramax is a bottom-up procedure, which starts 
with the same number of clusters as the number of basic 
spatial units. These clusters are gradually amalgamated 
until one cluster is formed which consists of all basic spatial 
units (de Jong and van der Vaart, 2010). Thus, the Intramax 
is a stepwise analysis: there are n basic spatial units, and 
(n − 1) steps. The objective of the method is to maximise 
the share of the inner interactions of a region in the sum 
of column and row values of the interaction matrix (Masser 
and Brown, 1975). The adjusted standardised matrix is an 
input in the aggregation procedure. The Intramax method 
uses, for the standardisation of the interaction matrix, the 
following formula:

(3)

where aij is a value for an input matrix cell. Each pair 
of regions is examined separately in each step and is 
amalgamated on the basis of the maximum value for the 
objective function. The objective function can be calculated 
only if all ∑kTik > 0 and all ∑kTkj > 0 (Landré, 2012).

Tab. 1: Characteristics of regional system FRD 2B. Source: Klapka et al. (2014)
Note: *var. coef. = Coefficient of variation

β1 value β2 value β3 value β4 value

Self-
containment 

of reg. 
system

Number of 
regions

Self-
containment 

(mean)

Self-
containment 

(median)

Self-
containment 

(var. coef.)

0.63 0.75 6,000 70,000 0.915 98 0.828 0.835 0.064

Economically 
active  

population 
(mean)

Economically 
active  

population 
(median)

Economically 
active  

population 
(var. coef*)

Population 
(mean)

Population 
(median)

Population 
(var. coef.*)

Area km2 
(mean)

Area km2

(median)
Area km2

(var. coef.*)

53,606.12 37,351.00 1.450 104,388.40 75,130.50 1.391 805.24 736.86 0.468
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units and on the y axis there are distances (similarities) between clusters. The Silhouette method (Rousseeuw, 
1987) has been used for validation of the resulting dendrogram. This method calculates the value of the width of 
silhouette for each object, the mean value of the width of a silhouette for each cluster, and the mean value of the 
width of silhouette for the whole data set. This approach compares mean silhouette widths for a given cluster. 
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3.3 Cluster analysis approach 
The third approach used in this paper to define functional 

meso regions comes from general cluster analysis methods. 
Each basic spatial unit is initially considered as a cluster 
and the procedure runs until all basic spatial units form 
one single cluster. The interaction matrix in this case 
is considered to be a matrix of the taxonomic distances 
(taxonomic dissimilarities) between individual basic spatial 
units and it was relativised by the CURDS interaction 
measure (Coombes, et al., 1982):

(4)

If absolute values for interaction enter the clustering 
process, there is a disadvantage when the analysis 
of taxonomic distances (dissimilarities) clusters 
typologically similar basic spatial units, in this case units 
with a similar structure of interactions and not units 
with strong mutual linkages. Therefore the input matrix 
values have to be “relativized” and correlated. More 
concretely, the values in the interaction matrix have been 
normalised by the above-mentioned interaction measure 
(CURDS). The values in the normalised matrix have 
been correlated by the use of Pearson’s coefficient. The 
analysis produces a dendrogram, where, on the x axis, 
there are basic spatial units and on the y axis there are 
distances (similarities) between clusters. The Silhouette 
method (Rousseeuw, 1987) has been used for validation 
of the resulting dendrogram. This method calculates the 
value of the width of silhouette for each object, the mean 
value of the width of a silhouette for each cluster, and the 
mean value of the width of silhouette for the whole data 
set. This approach compares mean silhouette widths for 
a given cluster. Silhouette represents the proportion of 
similarity and dissimilarity to other clusters. 

The calculation of the Silhoutte coefficient is done in 
three consequent steps. Firstly for each object (i) its average 
distance (ai) to all remaining objects in a cluster is calculated. 
Secondly for each object (i) and any cluster not containing 
the object, the object’s average distance from all the objects 
in the given cluster is calculated. The minimum value (bi) is 
found with respect to all clusters. Finally for the object (i) 
the Silhouette coefficient is calculated according to:

(5)

The measurement of similarity of basic spatial units and 
their clustering into meso regions is based on the Euclidean 
distance:

(6)

where dr(xi, xj) is the taxonomic distance between object i 
and j, xim is the value of criterion m for object i, and xjm the 
value of criterion m for object j. There are several approaches 
to the clustering of objects on the basis of their taxonomic 
distance or similarity (Gustafson,  1973). In this paper, 
Ward’s method, based on the loss of information during 
clustering, has been applied (see Ward, 1963: 239–243). The 
clustering criterion is the total sum of square errors of each 
object from the group centroid, to which it belongs.

4. Results and discussion
Table  2 presents the basic statistics for five functional 

meso regional systems, where systems M-FRD  1A and  1B 
were produced by the multistage local labour market area 
approach, systems M-FRD  2A and  2B were produced by 
the cluster analysis approach, and system M-FRD  3 was 
produced by the Intramax approach. The Job Ratio function 
has been calculated according to:

(7)

If its value exceeds 1, the region offers more jobs than the 
number of employed persons in the region. Table 2 comprises 
three types of self-containment. The first type was proposed 
by Halás, et al., (2015) and is calculated by:

(8)

The remaining two types of self-containment (Casado-
Díaz, 2003) express the so called supply-side self-containment:

(9)

and demand-side self-containment:

(10)

The former expresses the share of employed persons 
working locally out of the total employed persons in the 
region, while the latter expresses the share of employed 
persons working locally out of the total number of jobs in 
the region.

Five variants of functional meso regional systems of the 
Czech Republic are presented in figures 1–5, and laid over 
basic physical geographical conditions. The largest cities 
in each meso region (in terms of the number of employed 
persons) are labelled on the maps. The inner structure 
of meso regions and inter-regional interactions are also 
presented on the maps. The relationships between basic 
spatial units (functional micro regions – see Fig.  6 for 
their names) are used for this purpose, and three ways of 
representing the interactions are used in order to provide 
the highest diversity of views on the Czech regional system. 
Thus, the inter-regional relationships are based on the 
Smart’s measure (Figs.  1 and  2), the CURDS measure 
(Figs.  3 and  4) and the absolute numbers for daily travel-
to-work flows (Fig. 5). It should be noted here that all three 
were applied to all five meso regional systems; the selection 
presented in this paper is a result of limited space.

The variant M-FRD  1A (Fig.  1) consists of eight meso 
regions. The lowest level of self-containment  (0.959) is in 
the meso region in eastern Bohemia (Hradec Králové), with 
significant cross-border interactions between the pairs of 
micro regions Jičín–Mladá Boleslav, Vrchlabí–Semily, and 
Vysoké Mýto–Svitavy. In contrast, the highest level of self-
containment  (0.981) is in the region of northern Moravia 
and Silesia (Ostrava), with strong interactions within this 
region. The overall pattern of this meso regional system 
very markedly resembles the administrative regional 
division of Bohemia as it has existed in the Czech Republic 
(Czechoslovakia) since  1960. In Moravia and Silesia, 
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limits of self-containment and size are set by the researcher. The values for these four parameters (β1, β2, β3 and
β4) have resulted from extensive testing and are presented in Table 2. The size parameter is based on the number 
of employed persons. The amalgamation of basic spatial units (proto regions) is based on Smart’s measure (Smart, 
1974), which is expressed by the formula:
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

∑  	∗	∑  		+ 




∑ ∗	∑  	 	

where Tij is the flow from spatial unit i into spatial unit j, Tji is the flow from spatial unit j to spatial unit i, ∑kTik

denotes all out-going flows from i, ∑kTkj denotes all in-going flows to j, ∑kTjk denotes all out-going flows from j, 
and ∑kTki denotes all in-going flows to i. After each amalgamation the interaction matrix is updated. An 
indisputable benefit of this method is that it is possible to set and adjust input parameters for the need to optimise 
the resulting regional systems. 

3.2 The Intramax approach 

The second approach to defining functional meso regions in this paper is based on maximising intra-regional flows 
– Intramax (Masser and Brown, 1975). The Intramax algorithm identifies functional regions through the 
hierarchical aggregation of basic spatial units, with the objective of forming homogeneous clusters (Landré, 2012). 
The interaction measure is used as an objective function in the hierarchical clustering algorithm and it can be 
expressed by the formula: 
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The Intramax is a bottom-up procedure, which starts with the same number of clusters as the number of basic 
spatial units. These clusters are gradually amalgamated until one cluster is formed which consists of all basic 
spatial units (de Jong and van der Vaart, 2010). Thus, the Intramax is a stepwise analysis: there are n basic spatial 
units, and (n – 1) steps. The objective of the method is to maximise the share of the inner interactions of a region 
in the sum of column and row values of the interaction matrix (Masser and Brown, 1975). The adjusted 
standardised matrix is an input in the aggregation procedure. The Intramax method uses, for the standardisation of 
the interaction matrix, the formula:
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where aij is a value for an input matrix cell. Each pair of regions is examined separately in each step and is 
amalgamated on the basis of the maximum value for the objective function. The objective function can be 
calculated only if all ∑kTik > 0 and all ∑kTkj > 0 (Landré, 2012). 

3.3 Cluster analysis approach  

The third approach used in this paper to define functional meso regions comes from general cluster analysis 
methods. Each basic spatial unit is initially considered as a cluster and the procedure runs until all basic spatial 
units form one single cluster. The interaction matrix in this case is considered to be a matrix of the taxonomic 
distances (taxonomic dissimilarities) between individual basic spatial units and it was relativised by the CURDS 
interaction measure (Coombes, et al., 1982): 
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If absolute values for interaction enter the clustering process, there is a disadvantage when the analysis of 
taxonomic distances (dissimilarities) clusters typologically similar basic spatial units, in this case units with a 
similar structure of interactions and not units with strong mutual linkages. Therefore the input matrix values have 
to be “relativized” and correlated. More concretely, the values in the interaction matrix have been normalised by 
the above-mentioned interaction measure (CURDS). The values in the normalised matrix have been correlated by 
the use of Pearson’s coefficient. The analysis produces a dendrogram, where, on the x axis, there are basic spatial 
units and on the y axis there are distances (similarities) between clusters. The Silhouette method (Rousseeuw, 
1987) has been used for validation of the resulting dendrogram. This method calculates the value of the width of 
silhouette for each object, the mean value of the width of a silhouette for each cluster, and the mean value of the 
width of silhouette for the whole data set. This approach compares mean silhouette widths for a given cluster. 
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Silhouette represents the proportion of similarity and dissimilarity to other clusters. The calculation of the Silhoutte 
coefficient is done in three consequent steps. Firstly for each object (i) its average distance (ai) to all remaining 
objects in a cluster is calculated. Secondly for each object (i) and any cluster not containing the object, the object’s 
average distance from all the objects in the given cluster is calculated. The minimum value (bi) is found with 
respect to all clusters. Finally for the object (i) the Silhouette coefficient is calculated according to:  

si = (bi - ai)/max(ai, bi) 

The measurement of similarity of basic spatial units and their clustering into meso regions is based on the 
Euclidean distance: 

dr(xi,xj) = ∑    ,

where dr(xi,xj) is the taxonomic distance between object i and j, xim is the value of criterion m for object i, and  xjm

the value of criterion m for object j. There are several approaches to the clustering of objects on the basis of their 
taxonomic distance or similarity (Gustafson, 1973). In this paper, Ward’s method, based on the loss of 
information during clustering, has been applied (see Ward, 1963: 239 - 243). The clustering criterion is the total 
sum of square errors of each object from the group centroid, to which it belongs. 

4. Results and discussion 

Table 2 presents the basic statistics for five functional meso regional systems, where systems M-FRD 1A and 1B 
were produced by the multistage local labour market area approach, systems M-FRD 2A and 2B were produced 
by the cluster analysis approach, and system M-FRD 3 was produced by the Intramax approach. The Job Ratio 
function has been calculated according to: ∑ ∑  . 

If its value exceeds 1, the region offers more jobs than the number of employed persons in the region. Table 2 
comprises three types of self-containment. The first type was proposed by Halás, et al., (2015) and is calculated 
by: 


∑  ∑  .

The remaining two types of self-containment (Casado-Díaz, 2003) express the so called supply-side self-
containment: ∑ 
and demand-side self-containment: ∑ 
The former expresses the share of employed persons working locally out of the total employed persons in the 
region, while the latter expresses the share of employed persons working locally out of the total number of jobs 
in the region. 

Five variants of functional meso regional systems of the Czech Republic are presented in figures 1‒5, and laid 
over basic physical geographical conditions. The largest cities in each meso region (in terms of the number of 
employed persons) are labelled on the maps. The inner structure of meso regions and inter-regional interactions 
are also presented on the maps. The relationships between basic spatial units (functional micro regions – see Fig. 
6 for their names) are used for this purpose, and three ways of representing the interactions are used in order to 
provide the highest diversity of views on the Czech regional system. Thus, the inter-regional relationships are 
based on the Smart’s measure (Figs. 1 and 2), the CURDS measure (Figs. 3 and 4) and the absolute numbers for 
daily travel-to-work flows (Fig. 5). It should be noted here that all three were applied to all five meso regional 
systems; the selection presented in this paper is a result of limited space. 
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provide the highest diversity of views on the Czech regional system. Thus, the inter-regional relationships are 
based on the Smart’s measure (Figs. 1 and 2), the CURDS measure (Figs. 3 and 4) and the absolute numbers for 
daily travel-to-work flows (Fig. 5). It should be noted here that all three were applied to all five meso regional 
systems; the selection presented in this paper is a result of limited space. 
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
∑  ∑  .
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region, while the latter expresses the share of employed persons working locally out of the total number of jobs 
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Five variants of functional meso regional systems of the Czech Republic are presented in figures 1‒5, and laid 
over basic physical geographical conditions. The largest cities in each meso region (in terms of the number of 
employed persons) are labelled on the maps. The inner structure of meso regions and inter-regional interactions 
are also presented on the maps. The relationships between basic spatial units (functional micro regions – see Fig. 
6 for their names) are used for this purpose, and three ways of representing the interactions are used in order to 
provide the highest diversity of views on the Czech regional system. Thus, the inter-regional relationships are 
based on the Smart’s measure (Figs. 1 and 2), the CURDS measure (Figs. 3 and 4) and the absolute numbers for 
daily travel-to-work flows (Fig. 5). It should be noted here that all three were applied to all five meso regional 
systems; the selection presented in this paper is a result of limited space. 
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however, there is no such significant resemblance. Minor 
changes in the parameters of the constraint function 
(slightly lower values for size and self-containment) have 
produced the variant M-FRD 1B (Fig.  2). In this case the 
meso region in central Moravia has been split into two 
(Olomouc and Zlín), with the latter having the lowest 
level of self-containment  (0.952), because of strong cross-
border interactions between the pairs of micro regions 
Kroměříž–Přerov and Vsetín–Valašské Meziříčí. These 
two variants can be considered as the most suitable for 
further geographical and socio-economic analyses. In our 
opinion, they best reflect the geographic space of the Czech 
Republic and respect a large portion of the country’s natural 
geographic boundaries.

The two variants of functional meso regions (M-FRD 2A, 
see Fig. 3; M-FRD 2B, see Fig. 4) result from a single run of 
the regionalisation procedure based on the cluster analysis 
approach. Both variants of meso regional systems have 
been derived from a dendrogram, where the analysis of 
the procedure based on the Silhouette method offered two 
possibilities corresponding to the meso level. The highest 
average values for the Silhouette coefficient correspond 
for  8  and  12  clusters (i.e. meso regions); in other words, 
for 8 and 12 clusters there were the most distinct differences 
between two consequent taxonomic distances in both 
directions. Inter-regional interactions between constituent 
functional micro regions are expressed through the values 
of the CURDS interaction measure (as was noted earlier), 

Tab. 2. Characteristics for variants of meso regional systems of the Czech Republic. Sources: authors’ computations

Fig. 1: Regional system M-FRD 1A. Sources: authors’ elaboration, Klapka et al., (2014)

Attributes for regional systems M-FRD 1A M-FRD 1B M-FRD 2A M-FRD 2B M-FRD 3

β1 (self-containment, lower limit) 0.8 0.75 x x X 

β2 (self-containment, upper limit) 0.9 0.85 x x X

β3 (size of region, lower limit) 290,000 250,000 x x X

β4 (size of region, upper limit) 300,000 251,000 x x X

Number of regions 8 9 12 8 9

Size (mean) 554,332 492,740 369,555 554,332 492,740

Size (median) 522,015 484,429 288,810 521,781 380,693

Job ratio function (mean) 1.008 0.994 0.942 0.959 0.919

Job ratio function (median) 0.668 0.741 0.756 0.682 0.858

Self-containment (mean) 0.969 0.965 0.957 0.969 0.965

Self-containment (median) 0.968 0.965 0.958 0.970 0.968

Population (mean) 1,278,758 1,136,673 852,505 1,278,758 1,136,673

Population (median) 1,261,083 1,111,630 643,953 1,261,554 852,794

Supply-side self-containment (mean) 0.983 0.981 0.976 0.983 0.981

Supply-side self-containment (median) 0.984 0.982 0.975 0.984 0.982

Demand-side self-containment (mean) 0.986 0.984 0.980 0.986 0.984

Demand-side self-containment (median) 0.987 0.984 0.983 0.986 0.985
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Fig. 2: Regional system M-FRD 1B. Sources: authors’ elaboration, Klapka et al. (2014)

Fig. 3: Regional system M-FRD 2A. Sources: authors’ elaboration, Klapka et al. (2014)

because the CURDS measure has been used for adjustments 
to the input interaction matrix. The variant M-FRD  2A 
consists of twelve meso regions, which is also the highest 
number of meso regions reached by the approaches used 
in this paper. The highest self-containment (0.982) is again 
in the region of northern Moravia and Silesia (Ostrava). 
The lowest self-containment is recorded in eastern 
Bohemia with two meso regions (Hradec Králové:  0.939, 
Pardubice:  0.926), which have significant mutual cross-
border interactions due to the spatial proximity of their 
largest centres.

The variant M-FRD  2B has amalgamated some meso 
regions from the variant M-FRD 2A; according to the rank 
of amalgamation of regions in the resulting dendrogram, the 
Zlin and Olomouc regions were amalgamated in Moravia, the 
Hradec Králové and Pardubice regions in the east of Bohemia, 

the Plzeň and Karlovy Vary regions in the west of Bohemia, 
and Liberec and Ústí nad Labem regions in the north of 
Bohemia. This variant consists of eight meso regions, similar 
to the variant M-FRD 1A, both being very much alike in their 
spatial patterns. The difference between them lies in the 
meso regional affinity of some oscillating micro regions, such 
as Mladá Boleslav, which was removed from central Bohemia 
(Prague) and assigned to northern Bohemia (Liberec).

The last variant (M-FRD 3, see Fig. 5) has been produced 
using the Intramax approach. This meso regional system 
significantly differs from the preceding two pairs of systems. 
It consists of nine meso regions and arguably the most visible 
and unusual feature of this system is the spatial extent 
of the Brno region, which has spread along the historical 
border between Bohemia and Moravia, including the 
historically Bohemian micro-regions of Jindřichův Hradec, 
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Pelhřimov, Havlíčkův Brod, Hlinsko, Vysoké Mýto, Česká 
Třebova, Letohrad, and part of the Bohemian micro region 
of Svitavy. The spatial extent of northern Bohemia (Liberec) 
is similarly arguable. This meso region gained the micro 
regions of Jičín (typically assigned to eastern Bohemia) and 
Děčín (typically assigned to north-western Bohemia). Unlike 
the variant M-FRD 2B, central Bohemia (Prague) took over 
the micro region of Litoměřice from north-western Bohemia 
(Ústí nad Labem). This shift is responsible for the very low 
self-containment  (0.945) of north-western Bohemia (Ústí 
nad Labem), however, which is caused by the strong cross-
border interactions between the pair of micro regions Ústí 
nad Labem and Litoměřice.

Figure  6  presents all the functional micro regions that 
can be understood as oscillating. This means that during 
the analyses presented in this paper, they belonged to a 

different meso region in at least one case, when comparing 
all five functional meso regional systems. Naturally, the 
cases caused by the basic amalgamation of two meso 
regions which reflect different totals of meso regions in 
each system, are excluded from the results presented 
in Figure 6. It has to be admitted that a crucial role has 
been played by the variant M-FRD 3 in this respect, and it 
represents the largest spatial difference in the definitions 
of meso regions.

The identification of oscillating basic spatial units can 
be useful in processes which optimise the boundaries 
of regions and which are based on fuzzy set theory. The 
fuzziness of TTWA is examined and analysed for instance 
by Feng (2009), who proposed the optimisation of regional 
systems through the analysis and identification of the 
maximum values of the membership function for oscillating 

Fig. 4: Regional system M-FRD 2B. Sources: authors’ elaboration, Klapka et al. (2014)

Fig. 5: Regional system M-FRD 3. Sources: authors’ elaboration, Klapka et al. (2014)
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basic spatial units. A similar principle was used by Kropp 
and Schwengler (2014) for the optimisation of LLMA.

Four spatial clusters of oscillating micro regions can 
be identified. The first can be found along the historical 
Bohemian-Moravian border (see above). The ambiguity 
in the affinity of these regions is conditioned by frequent 
and significant historical changes in the administrative 
division of the Czech Lands, which affected the area along 
the historical border between Bohemia and Moravia. 
The change of importance of regional centres is related 
to the change in commuting patterns. Until the mid 
of  20th century administrative divisions had respected 
the historical border. This was violated by the formation 
of the region around Jihlava. Other regions of this type 
(Letohrad, Česká Třebová, Svitavy) also changed their 
regional affinity between the regional centres of eastern 
Bohemia and Moravia. A certain degree of ambiguity 
has been preserved until present. The second cluster is 
formed along the north and north-east border of central 
Bohemia, where the influence of the capital city Prague 
and the regional centres of Hradec Králové and Liberec 
oscillates (the micro regions of Litoměřice, Mladá Boleslav 
and Jičín). The third spatial cluster can be found along the 
western part of the border between the historical regions 
of Moravia and Silesia (micro regions of Jeseník, Krnov 
and Bruntál), whose meso regional affinity is not quite 
clear. The last spatial “cluster” is formed only by a single 
micro region (Valašské Meziříčí), which oscillates between 
the spheres of influence of the meso regional centres of 
Ostrava, Zlín or Olomouc, depending on the number of 
meso regions.

5. Conclusions
Extensive analyses of inter-micro-regional daily travel-to-

work flows in the Czech Republic have provided a number 
of meso regional patterns, out of which five have been 
selected for the purposes of this paper, on the basis of the 
total self-containment of a particular meso regional system. 
Three methods for the definition of meso regions have been 
applied, based on the labour market area approach, the 

Intramax approach, and the cluster analysis approach, and 
previously none of these methods have been used for the 
Czech Republic. In order to provide sufficient insight into 
intra-meso regional and inter-meso regional interactions, 
the flows between constituent micro regions have also been 
analysed, using three different expressions of these flows.

The LLMA approach used an adjusted third variant of the 
CURDS regionalisation algorithm (multistage agglomerative 
procedure), which has produced two variants of the Czech 
meso regional system (M-FRD  1A and M-FRD  1B). These 
two variants are based on different parameters regarding 
the levels of size and self-containment for the resulting 
functional meso regions. Both variants generally manifest 
a high degree of similarity; however, the application of 
multistage methods and the adjustments of their parameters 
do not produce nested regional systems.

The Intramax approach uses a hierarchical clustering 
procedure, which gives a single variant of the Czech meso 
regional system (M-FRD 3). The cluster analysis approach 
has provided two variants of the Czech meso regional 
systems (M-FRD  2A and M-FRD  2B). Even though both 
methods come from the principles of cluster analysis, they 
differ in linkage measures and in the adjustment of the input 
interaction (data matrix), and their results are considerably 
different. Unlike the multistage methods, they are able to 
provide nested variants for regional systems of different and 
similar hierarchical levels (see the variants M-FRD 2A and 
M-FRD 2B). This is secured by the analysis of outputs in the 
form of a dendrogram.

All five variants for functional meso regional systems of 
the Czech Republic conform to the normalised categories 
of either NUTS  2 regions or NUTS  3 regions (the case of 
variant M-FRD 2A). Generally, it can be concluded that all 
three methods are suitable for a definition of functional meso 
regions, even though there are some differences in respective 
meso regional patterns. In this respect, four spatial clusters 
of so-called oscillating functional micro regions have been 
identified. Finally, the functional micro regions have shown 
that they can act as suitable building blocks for their 
amalgamation into higher-level hierarchical regions.

Fig. 6: Oscillating functional micro regions. Sources: authors’ elaboration, Klapka et al. (2014)
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The efficiency of areal units in spatial analysis: Assessing 
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Abstract
An attempt to provide a procedure for the assessment of the efficiency of various regional systems for the 
purposes of spatial analysis is presented in this paper. Functional regions as well as approximated functional 
regions and the existing administrative regions in the Czech Republic are evaluated, as examples of regional 
systems to be compared and assessed. Functional regions and approximated functional regions are defined 
according to the adjusted third variant of the CURDS regionalisation algorithm, using the latest knowledge 
on the operation of the constraint function. The comparisons of individual regional systems are based on 
LISA maps and particularly on the assessment of regional variability, including the measures of internal 
homogeneity and external variability in the regional systems.
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1. Introduction
This paper attempts to provide a procedure which uses 

the concept of functional region to assess the efficiency 
of agglomerated areal units for the purposes of spatial 
analysis, particularly for the assessment of regional 
variability. Each grouping of arbitrary basic spatial units 
into larger regions is part of the so-called modifiable areal 
unit problem (MAUP – Openshaw,  1984; Fortheringham 
and Wong, 1991; Unwin, 1996; Grasland et al.,  2006). As 
there is an extensive number of ways to organise basic 
spatial units into regions, the question of identification 
of an optimal or near-optimal solution is raised. If an 
inappropriate solution is chosen, important characteristics 
of the spatial distribution of geographical phenomena may 
remain concealed, and the application of such regions for 
spatial analysis of phenomena such as regional inequalities 
would be compromised in such a case.

Spatial analysis is a set of techniques and models that 
explicitly use various scales of reference and data related 
to phenomena and objects/cases in a spatially arrayed 
manner. The ‘correct’ grouping of these objects into more 
“manageable” cases can be seen as a necessary precondition 
for sensitive spatial analyses that explain or predict the 
spatial distribution of geographical phenomena. One of the 
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objectives of spatial analysis can be the identification and 
characterisation of areal units (as regions, for example) that 
manifest either a higher degree of internal homogeneity and 
external separation (formal regions), or a large degree of 
internal cohesion and external self-containment in relation 
to other areal units or regions (functional regions).

This paper examines two types of regions: functional 
regions and administrative regions. Correctly-defined 
functional regions (i.e. those based on informed choices) can 
serve better as a geographical tool for administrative use 
than unsuitably- and arbitrarily-delineated administrative 
regions, which has been acknowledged long ago by 
Haggett  (1965) and Dziewoński  (1967). It can be assumed 
that suitable administrative regions, particularly at a micro-
regional level, should be based on functional spatial relations. 
In addition, it can be generally assumed that functional 
regions better capture the geographical variability of spatial 
information for spatial analyses. If similar measurements 
of geographical variability are obtained for administrative 
regions, then it would indicate that such administrative 
regions are defined according to spatial functionality and 
suitable for spatial analyses. The hypothesis of this paper is 
that a regional system of functional regions (or approximated 
functional regions) should manifest at least the same value 
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(or higher) for a measure of internal homogeneity and 
external variability. A procedure that enables one to assess 
the suitability of administrative units for spatial analyses is 
expected to be the main methodological outcome of the work. 
Several sets of functional regions, based on the 2011 census 
data for the Czech Republic are expected to be the applied 
outcome of the paper. If functional regions have higher 
values for internal homogeneity and external variability, the 
administrative division would have certain insufficiencies 
regarding the principles of spatial efficiency and equity. 
If these values were comparable, administrative regions 
could be considered as being defined according to spatial 
functionality and as suitable for spatial analyses.

Given these introductory remarks, the main objective of 
the paper is to evaluate the efficiencies and suitability of 
administrative regions for spatial analysis. In order to fulfil 
this objective, two steps have to be carried out. First, as a 
tool for further analyses and the introductory objectives, 
functional regions based on daily travel-to-work flows have 
to be defined. Several sets of optimised functional regional 
systems and approximated functional regional systems are 
produced to serve as bases for comparison. Second, the 
analyses of regional variability of a set of selected variables 
for each regional system will be carried out. This paper will 
use the territory of the Czech Republic as the study area, 
and will analyse selected socio-economic characteristics in 
terms of their regional variability, in two administrative 
systems (‘districts’, and ‘Areas of Municipalities with 
Extended Powers’: AMEP) and five functional regional 
systems (three of them consisting of optimised [“natural”] 
functional regions, and two of which consist of approximated 
functional regions, with the latter approximation taking 
into consideration the number of districts and AMEPs).

The remainder of the paper is organised in the following 
way. Section  2 presents some necessary theoretical 
background regarding the issue of functional regions, 
administrative regions and regional variability. Section  3 
describes the methods that are applied in the paper regarding 
the delineation of functional regions and the measurement 
of regional variability. Section  4 presents the results and 
necessary comments. In the conclusion the paper returns to 
the objectives and hypothesis.

2. Theoretical background
The paper theoretically builds on three presuppositions 

that are interlinked, the common denominator being that 
some units for spatial analysis are needed and are sought, 
and this has its practical purposes (such as the reporting 
of statistical data in general (e.g. the Census) and for 
planning purposes – the two most general). Statistical data 
in geography have mostly an aggregated character; they 
are composed of attributes referring to an individual, who 
has a position in geographic space. The first presupposition 
is that there are two options with regard to the units of 
spatial analysis: either the existing administrative regions 
can be used, or regions based on particular criteria have 
to be defined. With reference to the latter, this paper has 
opted to use functional regions based on daily travel-to-work 
flows, and to compare them to the existing administrative 
units. The second presupposition is based on the general 
fact that all geographical regions which consist of some 
arbitrary basic spatial units face the general problem of 
how many regions there should be optimally, and how 
these regions should be composed from basic spatial units 
(MAUP; see section  2.2). Finally, the third presupposition 

is based on the belief or the requirement that the spatial 
uncertainty stemming from the MAUP be reduced as much 
as possible. Thus, there are two types of regional systems 
(administrative and functional) and the need to decide on 
their suitability for other purposes is paramount: in order to 
achieve such suitability, the analysis of regional variability 
within both systems appears to be a convenient procedure.

2.1 Functional and administrative regions
A functional region is regarded in this paper as it is in our 

preceding research (e.g. Klapka et al.,  2013a,  2014; Halás 
et al., 2015). It is a general concept that has to meet only 
the condition of the self-containment of region-organising 
horizontal interactions or flows. This means that these 
horizontal functional relations should be maximised within 
a region and minimised across its boundaries, so that the 
principles of internal cohesiveness and external separation 
regarding spatial interactions are met (see for instance, 
Smart  1974; Karlsson and Olsson,  2006; Farmer and 
Fotheringham, 2011). Sometimes functional regions can be 
seen as nodal regions, i.e. regions defined and identified by 
the core-periphery dichotomy. Such nodal regions, however, 
also very often fulfil the condition of self-containment and 
they can be regarded as a more specific concept, a subset 
for a functional region (see Klapka et al.,  2013a). As the 
interactions come from human activities, functional regions 
can be seen as representative spatial images or imprints for 
relevant aspects of the (aggregated) spatial behaviour of 
individuals (Halás et al., 2015). The delineation of functional 
regions is mostly based on the analysis of statistical data, 
particularly daily travel-to-work flows (e.g. Goodman, 1970; 
Casado-Díaz and Coombes, 2011). These flows represent a 
residence-workplace daily rhythm of spatial behaviour and 
as such are the most frequent regular movements for a 
large part of the population (Hanson and Pratt, 1992; Heldt 
Cassel et al., 2013; Halás et al., 2015).

Administrative regions are usually strictly defined on 
the basis of rigorous rules and criteria and are used for 
normative purposes. One can assume that it should be 
of the utmost importance that they reflect an existing 
geographical reality (spatial behaviour of individuals, 
spatial patterns of their movements). If this is done, the 
inhabitants of respective areas will find their administrative 
region, particularly its centre with all the necessary 
offices and public services, localised in a space which they 
frequently use in their daily rhythms. Their ties to such 
regions exist objectively and are considerably strong. All 
this can also result in the strengthening of their emotional 
ties to a space. If such a spatial pattern and design is 
achieved, other geographical factors and characteristics 
can reflect and follow this arrangement, such as transport 
infrastructure, the distribution of public transport lines in 
space and time, etc.

Apart from the above-mentioned functional relationships, 
the construction of administrative regions also takes 
into account other auxiliary criteria, such as historical 
precedents, the existence of natural borders and barriers, 
and the spatial distribution of national and other population 
groups, inter alia. This is not always the case, however, and 
in some cases administrative systems are not well designed 
for political reasons or just because the rules or norms are 
unsuitable or they are designed on purpose (as is the case of 
Slovakia: see for example Buček, 2002, 2005; or Romania: 
Suciu, 2002). The delineation of administrative regions can 
be negatively affected by several risks, which have potentially 
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opposite effects to the delineation of administrative regions 
compared to definitions using a functional approach. For 
example, such risks are political influence, nationalistic 
motives, economic motives, etc. In this respect the risk of 
gerrymandering is among the first to arise (see for example, 
Bunge,  1966; Johnston,  2002; Moore,  2002; Suciu,  2002; 
Apollonio et  al.,  2009). As administrative regions also 
frequently serve as statistical areas, their unsuitable 
delineation can distort statistical spatial analyses in many 
cases – and in statistically unknowable ways.

In theory, the definition of administrative regions 
should respect three basic principles with regard to a 
space: spatial efficiency, spatial equity, and spatial stability 
(Bezák, 1997, who builds upon the concepts put forward by 
Goodall,  1987; Michniak,  2003; Halás and Klapka,  2012; 
Klapka, et al.,  2014). The principle of spatial efficiency 
states that the administrative geography of a territory 
should reflect the population distribution and its spatial 
behaviours (particularly spatial movements) to the greatest 
possible extent. Here is a clear connection to the concept of 
a functional region. The principle of spatial equity is based 
on the assumption that administrative centres should be 
equally accessible from the most peripheral parts of each 
administrative region. Finally, the principle of spatial 
stability requires that the administrative geography (e.g. 
boundaries of administrative units) of a territory should be 
stable over time.

The principle of spatial efficiency can sometimes be in 
contrast to the principle of spatial equity, because large 
regional centres usually tend to form much larger hinterlands 
than smaller regional centres. In this case, it is necessary 
to balance the opposite demands of the two principles. 
If functional regions are to be used as administrative 
regions, the principle of spatial equity should prevail. 
This requirement can be secured in concrete functional 
regionalisation tasks by relativising the interaction data, 
for instance by the use of Smart’s interaction measure 
(Smart,  1974; Casado-Díaz,  2000; Klapka, et al.,  2014). 
Similarly the principle of spatial stability can be in contrast 
to the two above-mentioned principles. This is the case 
when a biased administrative division does not respect 
natural patterns of settlement and regional systems and 
the interactions occurring in them. It is also appropriate 
to note that regions defined according to daily travel-to-
work flows can change over time (Ozkul, 2014). Therefore, 
a compromise between the principle of spatial stability on 
the one hand and the principles of spatial efficiency and 
equity on the other should be reached in legitimate cases, 
and revisions to administrative divisions should be made 
only in the most necessary cases.

2.2 Considerations on the assessment of relations between 
spatial distribution patterns and regional variability

A geographic space is non-homogeneous, both in vertical 
and horizontal directions. This inherent quality of space 
forms the basis for the study of spatial distribution patterns 
and regional variability. There is also an inherent temporal 
dimension. The assessment and analysis of such variability, 
however, relies to a considerable extent on the character and 
availability of relevant statistical information. Geographers 
often work with data that are spatially referenced and 
aggregated. The reason is twofold. First, secondary data 
are reported for some kind of arbitrary spatial units (e.g. 
census tracts, municipalities etc.) and they do not have the 
character of unique objects (statistical individuals). Second, 

it is useful to report primary or individual statistical data for 
certain kinds of spatial units, otherwise the analyses of their 
spatial distribution would be impossible or methodologically 
incorrect. In both cases, however, there is a possibility of 
spatial bias, which can compromise the spatial analyses and 
the interpretation of the results, because there is an almost 
infinite number of ways to aggregate individual pieces of 
statistical information into spatial units, zones and regions, 
and it has to be decided or estimated which spatial design 
better follows the spatial functionality principle and is thus 
more suitable.

This is referred to as a modifiable areal unit problem 
(MAUP); it has been identified by Gehlke and Biehl (1934), 
extended by Yule and Kendall  (1950) and discussed 
thoroughly by Openshaw  (1984), Fotheringham and 
Wong  (1991), Unwin  (1996) and Grasland, et al.  (2006). 
MAUP consists of two issues demanding attention: the 
first concerns the number of spatial units and is referred 
to as a scale effect (Openshaw, 1984); and second concerns 
the issue of alternative aggregations at the same or similar 
scales and is referred to as a zoning or aggregation effect 
(Openshaw, 1984).

There are ways to tackle the MAUP, or, more precisely, 
how to choose from various solutions to spatial designs, 
in terms of which one is more suitable for a given purpose 
and which one is less suitable (see for example, suggestions 
made already by Openshaw,  1977,  1984; Fotheringham 
and Wong,  1991). This paper does not tackle the problem 
fully in the first place, because the objective is not to define 
functional regions using quantitative methods so that their 
internal homogeneity and external variability is maximised. 
Consideration of MAUP cannot be avoided, however, because 
the paper compares the internal homogeneity and external 
variability of the existing normative administrative regions 
to the optimised and approximated functional regions, 
defined on the basis of daily movements of the population. 
Three types of regional variability measures can be generally 
applied in this respect: inter-regional variability, intra-
regional variability (internal homogeneity), and relative 
regional variability inequality (for methods, see section 3).

Another inherent quality of space, the horizontal 
distance (either absolute or relative) between geographical 
locations, raises the question of whether neighbourhood 
matters or not, when assessing the spatial distribution of 
geographical phenomena. It is generally agreed that it does 
(Goodchild, 1986: 3), which means that the values for a certain 
characteristic in one location, in one spatial unit, are affected 
by the values of this characteristic in neighbouring locations 
and neighbouring spatial units (see for instance Cliff and 
Ord, 1973; Goodchild, 1986; Anselin, 1995; Getis, 2008). This 
spatial dependency is considered to be an inherent feature 
of spatial data and reflects such basics as Tobler’s ‘first 
law of geography’ (Tobler, 1970: 236; 2004) and the role of 
distance in the probability of contacts between geographical 
locations (distance-decay functions). Spatial dependency 
can be measured by spatial autocorrelation statistics, 
which can be expressed both by global and local indices 
(see for instance, Anselin,  1995; Spurná,  2008; Netrdová 
and Nosek, 2009 in the Czech literature). While the global 
indices enable us to quantify the extent of spatial clustering 
of similar values in a space with one value, the results of 
local indices can be depicted on a map and used to identify 
spatial clusters and outliers. In the context of this paper, the 
global statistic of spatial autocorrelation, Moran’s I (Cliff 
and Ord, 1973; Anselin, 1988), is important for the selection 
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1 The total self-containment of the regional system is calculated as	       .

of studied characteristics according to their different level 
of spatial concentration. LISA analysis, the local statistic of 
spatial autocorrelation, is interesting for its comparisons of 
how defined regional systems conform to the actual spatial 
patterns of selected geographical characteristics.

3. Methods and data

3.1 Functional regions
A detailed overview of methods for the definition of 

functional regions is beyond the scope of this paper. Relevant 
discussions can be found for example in Coombes  (2000), 
van der Laan and Schalke  (2001), Flórez-Revuelta, 
et al. (2008); Casado-Díaz and Coombes (2011), Farmer and 
Fotheringham (2011), and in our own earlier papers (Klapka 
et al.,  2013b,  2014; Halás et al.,  2014,  2015). This paper 
favours the use of the so-called rule-based, or multistage 
approach to functional regionalisation that was introduced 
to this field of study by Smart  (1974) and later extended 
at the Centre for Urban and Regional Development Studies 
(CURDS) in Newcastle, UK (Coombes, et al., 1982, 1986). In 
this paper, the third variant of the CURDS regionalisation 
algorithm (Coombes and Bond,  2008; Coombes,  2010) is 
applied using the constraint function proposed and used 
by Halás et al.  (2015), and which has already been tested 
practically (Halás et al. 2014; Klapka et al., 2014), but only 
on the  2001  census data and using the second variant of 
the CURDS algorithm (Coombes et al.,  1986). This is the 
first time the third variant of the CURDS regionalisation 
algorithm has been applied to the territory of the Czech 
Republic. The method identifies as many functional 
regions as possible, according to the criteria set by the 
regionalisation algorithm.

The identification of functional regions is based on the 
analysis of spatial patterns of daily travel-to-work flows 
using the  2011  population census. These data have been 
stored in a large and sparse 6,251 × 6,251 non-symmetrised 
(flows: tij ≠ tji) matrix, for the municipalities of the Czech 
Republic that served as basic spatial units for all analyses 
presented in this paper. It is very important to note that the 
diagonal of the matrix included intra-unit flows (tii – in fact it 
is the number of employed residents working locally).

A crucial role in the regionalisation algorithm is played 
by the constraint function. It sets the minimal size and 
self-containment criteria for the resulting functional 
regions and it also comprises the trade-off between the 
two parameters. The trade-off means that smaller regions 
have to reach a higher level of self-containment, while, in 
contrast, larger regions are allowed to manifest a lower level 
of self-containment. The constraint function is in the form 
of a continuous curve and its shape is determined by five 
parameters (see below), four of which can be easily estimated. 
The notation of the constraint function is:

(1)

where β1, β2, β3, β4 are limits of the trade-off between the 
size and self-containment of a region (β1, β2 are lower and 
upper limits of the self-containment; β3, β4 are lower and 
upper limits of the size), and α determines the measure of 

the deflection of the trade-off part of the function (α = 0.09 
in this paper). For remaining expressions see the notation of 
the Smart’s measure (2) below.

As proposed by Halás et al. (2015), the constraint function 
can be used for the identification of the relatively optimal 
number of resulting functional regions through the estimation 
of four beta parameters. The analysis starts with loose values 
for these parameters, which produce a larger number of 
functional regions, and which provide the initial spatial pattern 
(in this paper β1 = 0.5, β2 = 0.55, β3 = 2,000, β4 = 10,000). 
These regions can be plotted on a graph according to the self-
containment and size variables. The graph also contains the 
constraint function and the regions appear in its upper right 
sector. If there is a considerable gap in the field of points, a 
new constraint function can be inserted and the values for 
the new beta parameters can be estimated. This step can be 
repeated several times and thus it can provide several variants 
of the optimised regional system (3 in the case of this paper). 
Of course, this operation can be used for the identification of 
a given number of regions, i.e. approximated regional systems 
can be defined in this way (2 in the case of this paper). The 
parameters for all regional systems, including their total self-
containment1, are presented in Table 2. Detailed theoretical 
and methodological discussion of the constraint function and 
its use is provided in Halás et al. (2015), and operations with 
the constraint function were applied by Halás et al. (2014) and 
Klapka et al. (2014).

The interaction measure used for the expression of 
the strength of the relationship between two basic spatial 
units (or a basic spatial unit and a “proto” region) was 
recommended, but not used, by Smart (1974). This measure 
is currently the most frequently used for the type of research 
tasks presented in this paper (see for example, Casado-
Díaz and Coombes,  2011). It is mathematically the most 
correct way for the relativisation and symmetrisation of 
two-dimensional interaction data. This measure levels 
the size differences between the regions and thus it is the 
most suitable compromise between the principles of spatial 
efficiency and equity.

The notation of the Smart’s measure is

(2)

where Tij is a value for a flow from the municipality i to the 
municipality j, Tji is a value for a flow from the municipality 
j to the municipality i, and k is the total number of basic 
spatial units (municipalities) in the system.

Finally, the procedure for the identification of functional 
regions of the Czech Republic consists of the following steps:

1.	 all basic spatial units are ranked in descending order 
according to the values of the constraint function and 
are considered to be so-called “proto” functional regions;

2.	 if all regions equal or exceed the value of the β1  parameter 
in the constraint function, the procedure stops, otherwise 
it proceeds to the next step;

3.	 the “proto” functional region with the lowest rank 
according to the value of the constraint function 
is dissolved into its constituent basic spatial units 
(municipalities) and these are ranked in descending 
order according to the constraint function;
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4.	 the constituent basic spatial unit with the highest rank 
is amalgamated with the “proto” functional region that 
it is most strongly related to according to the interaction 
measure (see further); and

5.	 after each amalgamation the values for the constraint 
function are recalculated and the procedure returns to 
the first step.

3.2 Spatial distribution patterns and regional variability
There are different types of geographical characteristics in 

a spatial and regional context, which have different spatial 
patterns and are influenced by different spatial and regional 
processes. The basic typology of the possible nature of 
characteristics based on spatial and regional concentration 
is shown in Table 1. Three of four types of characteristics 
can be found in reality, the characteristic with high regional 
concentration and low spatial concentration does not exist 
because a high regional concentration always implies a level 
of spatial concentration. We have analysed 17 characteristics 
from the  2011  census at the municipal level through both 
global and local spatial autocorrelation statistics and the 
regional decomposition of variability.

According to this typology, 4 geographical characteristics 
have been selected for analysis in this paper, in terms of 
their distinctive spatial distribution patterns and relative 
regional variability. Two characteristics with high spatial 
concentration are closely connected to the data used for the 
definition of functional regions, i.e. with the economic activity 
of the population: unemployment rate, and employment 
rate in agriculture. While the unemployment rate exhibits 
a relatively high regional concentration at all hierarchical 
regional levels, employment in agriculture is a specific 
characteristic influenced more by physical conditions than a 
regional structure based on socioeconomic relations. The two 
remaining characteristics with low regional concentration 
differ in their spatial concentration and do not manifest 
such a close connection for methodological reasons: average 
years in education, and the age preference index. The basic 
typology of the data used including their definitions is 
presented in Table  1. All the data for municipalities were 
obtained from the 2011 census.

For the purposes of comparison between the sets of 
the existing normative administrative regions and the 
optimised and approximated functional regions, a minor 
adjustment had to be made. As the four largest cities of 
the Czech Republic (Prague, Brno, Ostrava, and Plzeň) 
have their own normative administrative units, these cities 
are treated separately from their functional regions in all 
five sets of optimised and approximated regional systems 
in the parts of the paper dealing with the assessment of 
the regional variability of the four above-mentioned 
geographical characteristics.

The basic spatial patterns of the characteristics studied are 
introduced using local spatial autocorrelation, specifically 
LISA cluster maps (local indicators of spatial association) 
(Anselin,  1995). Based on the LISA methodology, we can 
categorize the municipalities with significant local spatial 
clustering into four categories. If a municipality, as well as 
its surrounding (geographically close) municipalities, has 
an above-mean value and the relationship is statistically 
significant, a cluster (hot spot or high-high type in this case) 
is formed. Besides hot spots, there are cold spots (low-low 
clusters), high-low (high values surrounded by low values), 
and low-high (low values surrounded by high values) 
outliers. If the relationship between the close municipalities 
is not significant according to tests based on the comparison 
between observed and expected values for the local Moran’s 
I statistics and the computation of z-scores, then no clusters 
or outliers are identified.

In spatial autocorrelation analysis it is important to 
operationalize geographical proximity using the matrix of 
spatial weights. In this paper, the distance-based spatial 
weight matrices are not chosen arbitrarily, but with respect 
to analyses of global spatial autocorrelation. Firstly, for each 
variable, Moran’s I (Cliff and Ord,  1973; Anselin,  1988) is 
calculated for a series of distances. Then the LISA cluster 
maps are constructed using the spatial weight matrix with the 
maximum z-score. With regard to the definition of regions, 
the highest values of z-score identify the level (geographical 
distance) at which the process operates most significantly. 
Thus, selected geographical characteristics can be attributed 
to specific regional levels. By using a z-score which reflects 

Tab. 1: General “spatial and regional” typology of characteristics used in the analysis
Source: Nosek and Netrdová (2014) – modified
Notes: (1) The unemployment rate is computed as the ratio of unemployed to the economically active population; (2) 
Employment in agriculture as a ratio of employed in agriculture to the total number of the employed population; 
(3) The average years in education as a weighted mean of the ratio of educated people at different stages in their 
education and the number of years needed to achieve this level of education; (4) The age preference index as a ratio of 
the population older than 64 years to the population younger than 15 years.

Regional Concentration HIGH Regional Concentration LOW 

Spatial Concentration 
HIGH

SPATIALLY dependent and bounded in REGIONS 

Concentrations in regions

– Unemployment rate – based on a labour market 
delimitation, which highly corresponds with regio-
nal levels in the Czech Republic

SPATIALLY dependent with no relation to REGIONS

Concentrations across regional borders

– Employment in agriculture – determined to a large 
extent by physical geography

– Average years in education – concentrated in larger 
settlements

Spatial Concentration 
LOW

Both SPATIALLY and REGIONALLY independent

No concentrations

– Age preference index – as a demographic 
characteristic relatively regularly distributed in space
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the intensity of spatial clustering for the identification of the 
optimal spatial weight matrix, the final LISA cluster map 
with the highest significance shows the largest clusters for 
each characteristic.

Sets of normative and functional regional systems are 
compared through:

1.	 a measure of regional variability (differences between 
regional means);

2.	 a measure of relative regional variability (importance 
of the regional level compared with the overall inter-
municipal variability); and

3.	 a measure of the internal homogeneity of regions 
(variability within regions).

For further description of different concepts of regional 
variability, see Nosek and Netrdová (2014).

Regional variability is measured using standard variability 
measures such as the coefficient of variation, and the Theil 
index. All these measures are analysed both in unweighted 
and weighted forms. The unweighted measures treat all 
regions the same, no matter how large they are in terms of 
their size. The weighted measures take some measure of size 
into account (see note below Table 3). Similarly, homogeneity 
(intra-regional variability) is measured by both weighted and 
unweighted coefficients of variation. 

Relative regional variability is measured by the Theil 
index decomposition. Of the standard variability measures, 
the Theil index is scale independent and decomposable, 
similar to the variance (Cowell and Jenkins, 1995; Shorrocks 
and Wan,  2005). The main purpose of the Theil index 
decomposition is to calculate both inter-regional (between 
regional) variability (TB) and intra-regional (within regional) 
variability (TW). By comparing inter-regional variability (TB) 

with the overall variability (TB + TW), the importance of 
respective regional levels can be quantified. These results 
are skewed to some extent, however, by stochastic variability, 
which appears irrespective of the design of regional patterns. 
Thus, a geographical standardization is introduced, which 
can filter out the stochastic component and isolate the 
contextual component (for details including formulas, see 
Novotný and Nosek,  2012). This filtering and isolation is 
used also in this paper.

4. Results
Basic statistical characteristics for five regional schemes 

are presented in Table  2: for three variants of optimised 
functional regions (functional regions according to daily 
travel-to-work flows – FRD); and for two variants of 
approximated functional regions (AFRD). Regional system 
AFRD 1 approximates the number of AMEPs, and regional 
system AFRD 2 approximates the number of districts in the 
Czech Republic. Delimitation of regions for regional systems 
is presented in Figures  1–5. For a comparison with the 
results from the 2001 census, see Klapka et al. (2014).

The overall spatial distribution of four selected 
characteristics regarding various manifestations of the 
neighbourhood effect is presented in Figure  6. Types of 
spatial autocorrelations are laid over the mean variant 
of the optimised functional regional system (FRD  2). The 
unemployment rate shows clusters of low unemployment 
in a belt stretching from south-western Bohemia through 
central Bohemia to north-eastern Bohemia. Clusters of high 
unemployment are particularly concentrated in problematic 
regions of north-western Bohemia and peripheral areas of 
Moravia and Silesia. Employment in agriculture presents a 
high degree of clustering, but without relation to the borders 

Tab. 2: Attributes for variants of regional system
Source: authors´ computations

Attribute for regional system FRD 1 FRD 2 FRD 3 AFRD 1 AFRD 2

β1 value 0.60 0.60 0.65 0.56 0.65

β2 value 0.65 0.65 0.70 0.70 0.80

β3 value 7,500 6,000 11,500 2,500 7,500

β4 value 15,000 100,000 30,000 25,000 120,000

Self-containment of regional system 0.908 0.916 0.926 0.896 0.930

No. of regions 142 125 95 201 80

Self-containment Mean 0.802 0.820 0.841 0.776 0.857

Median 0.809 0.824 0.857 0.778 0.861

Coeff. of variation 0.097 0.080 0.076 0.094 0.060

Economically active 
population Mean 28,434 32,217 42,501 20,087 50,585

Median 16,843 19,149 27,217 10,029 34,973

Coeff. of variation 2.016 1.955 1.715 2.420 1.541

Population Mean 74,381 84,497 111,181 52,548 132,027

Median 46,989 54,368 76,305 29,290 95,159

Coeff. of variation 2.037 1.761 1.547 2.185 1.386

Area km2 Mean 555.39 630.93 830.17 392.37 985.83

Median 463.81 504.63 734.01 343.17 849.91

Coeff. of variation 0.585 0.579 0.568 0.600 0.471
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Fig. 1: Regional system FRD 1. Source: authors’ elaboration

Fig. 2: Regional system FRD 2. Source: authors’ elaboration

Fig. 3: Regional system FRD 3. Source: authors’ elaboration
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Fig. 4: Approximated regional system AFRD 1 (left) and AMEPs (right)
Source: authors’ elaboration

Fig. 5: Approximated regional system AFRD 2 (left) and districts (right)
Source: authors’ elaboration

of micro regions and even those of meso regions. The average 
years in education cluster positively in the hinterland of 
large university cities. Finally the age preference index, as 
the least complex characteristic, clusters the least in spatial 
terms. The most relevant regions for this characteristic 
should have their centres approximately 40 km apart. Out 
of the four selected characteristics, the unemployment 
patterns in LISA cluster maps best approximate the borders 
of functional regions. Relatively cohesive clusters within 
functional regions result from the fact that unemployment 
is a characteristic directly related to the interaction data 
used for the construction of functional regions – i.e. daily 
travel-to-work flows.

Tables  3,  4, and  5 show different statistics measuring 
homogeneity, the importance of respective regional levels for 
overall variability, the regional variability for different regional 
systems (two administrative systems, two approximated 
regional systems, and three optimised regional systems), 
and the four selected socio-geographical characteristics. 
In accordance with the main objective of the paper, special 
attention is paid to the differences (and similarities) between 
administrative systems and functional regional systems. 

Intra-regional variability (homogeneity) is measured by the 
coefficient of variation, separately for each regional unit. This 
statistic was calculated in both unweighted and weighted 
form in order to eliminate the effect of different population 
sizes of units. The minimum, maximum, and mean values of 
the coefficient of variation presented in Table 3 show the level 
of differences between municipalities in each regional unit for 
a particular regional system.

Employment in agriculture has the highest values 
for intra-regional variability of all regional systems. In 
contrast, the average number of years in education has 
the lowest values. These results fully correspond with the 
spatial patterns of the characteristics studied and presented 
in Figure 6, particularly in regards to the homogeneity of 
spatial clusters of high or low values (i.e. the presence 
of spatial outliers), and the spatial relationship between 
clusters and regional boundaries. For example, agriculture 
is primarily not affected by the socio-economic regions, 
but by differences between rural and urban areas and by 
physical geographical conditions. In general, the values of 
inter-regional variability indicate no differences between 
administrative and functional regional systems. The only 
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logical dependence is on the number of units in each regional 
system: the more units there are, the lower the measure of 
intra-regional variability.

Table  4 presents values for inter-regional variability 
using the coefficient of variation. The same results were 
reached using the Theil index as another measure of 
interregional variability. The values show that not only the 
intraregional, but also the interregional variability reaches 
maximum values for the employment in agriculture and 
minimum values for the average number of years in 
education. The comparison of different regional systems 
again shows neither significant differences between 
administrative and functional systems, nor the influence 
of the number of units.

Table  5 presents the share the interregional component 
of the Theil index has of the total variability, when its 
intraregional component can be easily derived as an algebraic 
complement to  100%. Unlike previous results, these 
calculations bring new and unexpected information about 
the structure of interregional variability. The unemployment 
rate and the average years in education have the highest 
interregional component of the overall variability. In the 
case of the unemployment rate, it documents the effect of 
local labour markets (i.e. the functional regions used in this 
paper) on the spatial pattern of this characteristic. However, 
even this characteristic with its close relationship with 
functional regions does not show any major differences when 
compared with administrative regions.

All measures of intra-regional, relative regional and 
inter-regional variability for selected socio-geographical 
characteristics show very similar results for all seven 

Fig. 6: LISA cluster maps for studied characteristics. Source: authors’ elaboration
Notes: LISA cluster maps are constructed using a distance-based spatial weight matrix with the cut-off equal to the 
maximum z-score for respective characteristics. The significance level is 5%.

sets of regional systems; only the number of regions, i.e. 
the scale effect of MAUP, plays some role in this respect. 
All of the measures of variability are primarily affected 
by the number of regions; the zoning effect of MAUP has 
a marginal role with minimum effects as documented by 
the comparison of administrative and functional regional 
systems with similar numbers of units. One reason for this 
is that all characteristics studied are influenced by and 
operate on a micro-regional level, as demonstrated by the 
spatial autocorrelation analysis. It can be expected that 
more distinct regional variability should occur at higher or 
lower hierarchical levels. In this work, however, only the 
structure as a whole was analysed, without regard to local 
differences. It could be interesting to compare the regional 
delimitation and regional variability of some particular 
administrative and functional regions for a broader set of 
characteristics.

5. Conclusion
The third variant of the CURDS regionalization algorithm, 

using the original constraint function proposed by Halás 
et al.  (2015), has proved to be a suitable method for the 
definition of functional regions, and has produced relevant 
results. This variant uses the latest knowledge of operations 
using the constraint function and the regions are delineated 
without the unnecessary effects of further constraints, such 
as normative identification of regional cores and normative 
determination of size and self-containment of the resulting 
regions. The paper analysed seven regional systems in the 
Czech Republic at the micro-regional level. Two of them 
were represented by existing administrative divisions: 
districts and areas of municipalities with extended powers 
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Tab. 4: Inter-regional variability of the coefficient of variation for administrative and functional regional systems
Source: authors’ computations

Area type
Coefficient of variation unweighted Coefficient of variation weighted

UNEMP AGRI EDU AGE UNEMP AGRI EDU AGE

Czech Republic 0.47 0.86 0.04 0.74 0.33 1.36 0.06 0.27

A
dm

in
is

tr
at

iv
e 

 
re

gi
on

s

AMEP (206 units) Minimum 0.09 0.32 0.00 0.04 0.05 0.30 0.00 0.02

Maximum 0.72 1.67 0.12 1.57 0.42 1.87 0.07 0.79

mean 0.34 0.69 0.03 0.42 0.20 0.85 0.03 0.24

districts (77 units) Minimum 0.20 0.46 0.02 0.10 0.07 0.64 0.01 0.04

Maximum 0.62 1.57 0.07 1.34 0.39 1.83 0.05 0.57

mean 0.37 0.77 0.04 0.52 0.22 0.99 0.03 0.26

F
un

ct
io

n
al

 r
eg

io
n

s

AFRD 1 (205 units) Minimum 0.09 0.35 0.01 0.03 0.06 0.33 0.01 0.02

Maximum 0.64 1.48 0.11 1.67 0.44 2.01 0.07 0.83

mean 0.35 0.69 0.03 0.44 0.21 0.88 0.03 0.25

AFRD 2 (84 units) Minimum 0.19 0.44 0.02 0.10 0.10 0.65 0.02 0.13

Maximum 0.62 1.37 0.07 1.50 0.39 1.85 0.05 0.62

mean 0.37 0.75 0.04 0.50 0.23 0.99 0.03 0.26

FRD 1 (146 units) Minimum 0.09 0.34 0.01 0.03 0.07 0.43 0.01 0.02

Maximum 0.62 1.51 0.07 1.62 0.44 1.85 0.05 0.81

mean 0.35 0.71 0.03 0.47 0.21 0.92 0.03 0.25

FRD 2 (129 units) Minimum 0.14 0.34 0.02 0.10 0.07 0.44 0.01 0.10

Maximum 0.62 1.44 0.07 1.61 0.44 1.99 0.05 0.70

mean 0.35 0.72 0.04 0.47 0.22 0.93 0.03 0.25

FRD 3 (99 units) Minimum 0.14 0.44 0.02 0.10 0.10 0.51 0.01 0.11

Maximum 0.61 1.44 0.07 1.50 0.38 1.85 0.05 0.62

mean 0.36 0.74 0.04 0.49 0.22 0.96 0.03 0.25

difference between AMEP  
and AFRD 1 means 0.01 0.00 0.00 0.03 0.01 0.02 0.00 0.01

difference between districts  
and AFRD 2 means 0.00 − 0.02 0.00 − 0.02 0.00 0.00 0.00 − 0.01

Tab. 3: Intra-regional variability for administrative and functional regional systems. Source: authors’ computations
Notes: (1) in this and all following tables: UNEMP = unemployment rate; AGRI = employment in agriculture; 
EDU = average years in education; AGE = age preference index; (2) the weights used are (a) economically active 
population for UNEMP, (b) population for AGRI, EDU, and AGE.

Area type
Coefficient of variation unweighted Coefficient of variation weighted

UNEMP AGRI EDU AGE UNEMP AGRI EDU AGE

AMEP (206 units) 0.26 0.59 0.03 0.14 0.28 0.80 0.05 0.14

districts (77 units) 0.25 0.55 0.03 0.12 0.26 0.72 0.05 0.13

AFRD 1 (205 units) 0.25 0.59 0.03 0.13 0.28 0.81 0.05 0.14

AFRD 2 (84 units) 0.24 0.56 0.03 0.11 0.26 0.72 0.05 0.13

FRD 1 (146 units) 0.24 0.55 0.03 0.12 0.27 0.76 0.05 0.14

FRD 2 (129 units) 0.24 0.54 0.03 0.12 0.26 0.76 0.05 0.14

FRD 3 (99 units) 0.24 0.55 0.03 0.11 0.26 0.73 0.05 0.13

difference between AMEP 
and AFRD 1 means 0.01 0.00 0.00 0.00 0.00 − 0.01 0.00 0.00

difference between district 
and AFRD 2 means 0.01 − 0.01 0.00 0.01 0.00 0.00 0.00 0.00



2016, 24(2)	 MORAVIAN GEOGRAPHICAL REPORTS

57

2016, 24(2): 47–59	 MORAVIAN GEOGRAPHICAL REPORTS

57

Area type

Inter-regional component (%)

UNEMP AGRI EDU AGE

Theil Theil Theil Theil

AMEP (206 units) 70.42 50.73 75.83 32.07

districts (77 units) 62.12 43.38 68.18 23.58

AFRD 1 (205 units) 69.74 51.15 75.70 32.33

AFRD 2 (84 units) 61.74 44.17 68.43 25.09

FRD 1 (146 units) 65.97 47.98 72.62 28.42

FRD 2 (129 units) 65.15 47.19 71.71 28.00

FRD 3 (99 units) 62.95 45.29 69.06 25.91

difference between AMEP and 
AFRD 1 means 0.68 − 0.43 0.14 − 0.26

difference between district and 
AFRD 2 means 0.38 − 0.78 − 0.26 − 1.51

Tab. 5: Inter-regional component for administrative and functional regional systems
Source: authors’ computations

(AMEPs). Five spatial schemes were based on the concept 
of a functional region, which particularly favours the self-
containment of regions. Three of these spatial patterns 
were considered to consist of optimised functional regions, 
while two consisted of approximated functional regions, 
where the approximation took into account the number of 
administrative units, i.e. districts and AMEPs. The regional 
variability of four selected socio-geographical characteristics 
for the seven regional systems was analysed in order to fulfil 
the main objective of the paper, which was the evaluation of 
the efficiency and suitability of agglomerated areal units for 
the purpose of spatial and regional analysis.

The results of the spatial analyses indicated that there 
are no significant differences between administrative and 
functional regional systems with respect to the measurement 
of regional variability in the Czech Republic, at least for the 
chosen characteristics. Regarding the modifiable areal unit 
problem (MAUP), the agglomeration of basic spatial units 
(municipalities) into administrative or functional regions 
does not manifest any significant deviations within the 
set of seven regional systems. It has been shown that the 
number of regions is significant (the issue of scale) and that 
the statistical information presented in the tables changes 
gradually with a decreasing number of regions, without 
any shift in the direction of this change (with a decreasing 
number of regions the inter-regional variability and internal 
homogeneity increases). When the issue of aggregation 
(zoning) is taken into account, for the two pairs of regional 
systems with approximately the same number of regions, the 
results of all three kinds of analyses also did not show any 
significant differences within each pair.

The three variants of optimised functional regional 
systems, however, have the advantage of capturing the 
natural distribution of daily movements of a considerable 
part of the population, and thus for purely scientific and local 
view purposes they should be preferred to administrative 
regions. Moreover, these sets of functional regions are 
not manually adjusted, for instance with regard to the 
contiguity of regions. Thus, these regional systems offer 
further possibilities for spatial analyses between the level of 
AMEPs and the level of districts, such as a local view of the 
differences in the delineation of individual regions.

Finally, it can be generally concluded that the two analysed 
administrative systems of the Czech Republic (districts and 
AMEPS) do not differ significantly from regional systems 
which consist of functional regions with similar numbers of 
units, according to the measurement of regional variability. 
Therefore, administrative regional systems can be regarded 
as efficient enough and suitable for geographic, regional and 
spatial analysis. On the other hand, however, there are local 
differences between administrative and functional regional 
systems, particularly in the hinterlands of large cities. 
The outcomes of this project offer general conclusions not 
only for the Czech Republic, but also for other countries 
and regions. This generalisation is that functional regions 
are very suitable areal units for spatial analysis, regarding 
the labour market in particular. Given that the results of 
this analysis, however, do not differ to a great extent from 
the analysis carried out for administrative regions (at 
the same hierarchical level), there is no crucial reason to 
modify the administrative division in a more significant 
way. In this case it is more suitable to follow the principle 
of spatial stability, i.e. to support the stability of the current 
administrative divisions, including the operation of its 
institutions, over time.
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Abstract
Accessibility measures are useful for studies in Economic Geography. For example, accessibility to potential 
customers can be used in a study of firm behaviour. In such a study, it would be relevant to consider where 
potential customers live. This can be accomplished by splitting the accessibility measure into three parts: 
accessibility within the municipality, in other municipalities within the functional region, and in other regions. 
Many studies have proved this to be a very useful way to incorporate the spatial structure of the economy 
into economic studies. This paper deals with the issue of finding the distance-friction parameters needed to 
calculate such accessibility measures. There is a particular distance-friction parameter for interaction within 
the municipality, between municipalities within the functional region, and between regions. One way to find 
the distance-friction parameters is to solve a constrained gravity model, in which the functional regions 
are used as constraints. Both the models and the optimisation procedures in matrix form, and the Matlab 
programs used in the research are presented. The spatial constraints are gradually introduced into the models, 
which empowers the researcher to make such adjustments on their own. The data set used is available for 
downloading, and the reader can then try the models before creating a data set of their own.

Key words: spatial interaction; commuting; gravity model; entropy; constrained optimisation; Matlab; Sweden
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1. Introduction
On the global level, the use of specialisation and scale 

economies increase overall production. Individuals as well 
as regions specialise in producing only a part of what they 
consume. With more goods and services available, society 
has the potential to create a better life for the population. 
Transportation of both production factors and products are 
essential factors in this complex system.

It is important to consider and take into account that 
economic activity has a location, since spatial interaction in 
most cases declines with distance. Geurs and van Wee (2004) 
present and review accessibility measures: Hansen (1959) 
was one of the first to use the accessibility concept. 
Johansson, Klaesson and Olsson (2002, 2003) suggest that 
it is useful to split the accessibility measure into parts, and 
the idea of accessibility measures on three different spatial 
levels has been widely adopted. For example, it matters to a 
firm, with a store in a municipality, if a potential customer 
lives within the municipality, in another municipality 
within the functional region, or in another region. The firm 
can calculate accessibility to potential customers within the 
municipality, in other municipalities within the functional 
region, and in other regions. It can be valuable to split 

the accessibility in this way, since they are likely to be of 
unequal importance to the firm.

Many studies, mostly Swedish, have used the results 
from our earlier studies (Johansson, Klaesson and 
Olsson, 2002, 2003). It has been used to study many different 
activities: for example, Andersson and Ejermo (2005) study 
knowledge sources and the innovativeness of corporations; 
Gr�sjö  (2006) studies spatial spillovers of knowledge 
production; Karlsson and Olsson (2006) study how to define 
functional regions; Johansson and Karlsson  (2007) study 
R&D and export diversity; Andersson and Gr�sjö  (2009) 
study representations of space in empirical models; 
Olsson  (2012) studies the work at the public employment 
offices; Backman  (2013) studies human capital and firm 
productivity; Larsson and Öner (2014) study retail location; 
and Larsson  (2014) studies the density-wage relationship. 
Gr�sjö and Karlsson  (2015) is a nice review that contains 
additional papers. Gr�sjö and Karlsson  (2013: 1) write 
“However, it is a general method and there is no reason why 
the method does not apply for other countries”.

In order to calculate accessibility at three different spatial 
levels, the corresponding distance-friction parameters are 
needed. The main purpose of this paper is to enable you to 

http://www.geonika.cz/mgr.html
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calculate the distance-friction parameters for the country 
you are interested in. The procedures are illustrated, and you 
will learn how to solve such models in detail using Matlab. 
In this paper, three models are stated in matrix form. This 
makes it easier to connect the text to the computer program. 
The ambition is to make it easy to look at the mathematical 
formulation and find almost the same in the program. In 
order to reduce the threshold, a data set is available for 
downloading. With the data and programs available, you can 
run the programs and check all the results. In this paper, 
the first model is gradually improved by incorporation of 
additional spatial constraints. There are several advantages 
with this approach. It makes the presentation cleaner and 
easier to grasp. Moreover, it enables you to make your own 
changes in the programs. In the future, you may want to 
estimate another version of the third model, or you may have 
a data set structured differently. After reading this paper 
you can handle such issues with ease. At least, that is the 
intention. The models are gradually made more complex, by 
adding constraints, to better reflect reality. It is also a purpose 
of the paper to present a comparison of the predictive power of 
the models. The third model has relatively many constraints, 
and performs better.

2. Commuting
Most workers have a relatively short commute, and 

it is rare to find a worker with a really long commute. 
This tendency is illustrated in Fig.  1. In this paper, 
municipalities are used as the spatial unit of analysis. 
The municipalities are more or less related to each other, 
however, and this relatedness across municipalities is 
captured using functional regions. It is possible to form 
functional regions using several approaches. The basic idea 
is that a functional region is built from municipalities with 
a relatively high level of interaction. In this paper the local 
labour market definition of a functional region is used. A 
local labour market consists of the municipalities that are 
tightly connected by commuting. A local labour market 
has a self-sufficient centre and surrounding municipalities. 
The surrounding municipalities are added to the core 
municipality, or to a municipality connected to the core, 
using one-way commuting. You find details of the procedure 
and maps of the Swedish local labour markets from Statistics 
Sweden  (2015). An alternative to local labour markets is 
to create commuting zones using two-way commuting. 
Obviously, it is also possible to make other considerations. 
Karlsson and Olsson  (2006) present local labour markets 
and some other methods and alternatives. The exact version 
of the functional region is not that important. The results 
will be similar if another version is picked. The basic reason 
is that most municipalities would be aggregated to the same 
functional region, independent of approach.

The commuting pattern gradually changes with time, 
and the area under the curve in Fig. 1 gradually shifts to 
the right with increased mobility. Not much happens to 
the pattern during a short period of time, but the pattern 
may change significantly if you observe a longer period. In 
Sweden, the daily average mobility of persons has increased 
from half a kilometer in the year  1900  to  45  kilometers 
in the year  1999  (Andersson and Strömquist,  1988; 
SIKA,  2000). The Swedish Institute for Transport and 
Communications Analysis (SIKA) has been replaced by 
the government agency Transport Analysis, and they 
estimate that the 2011 mobility is 44 kilometers (Transport 
Analysis,  2013). This change is also readily seen in the 

number of functional regions. With a long-term perspective, 
the number of functional regions has declined. This means 
that the models capture the spatial structure at a point in 
time. The overall tendencies will be the same for example 
ten years later, but the models should be rerun once in a 
while with the then present spatial structure. Moreover, it is 
possible to form functional regions per category of workers. 
In some studies, one may want to investigate educational, 
occupational, and/or gender differences.

The country consists of n municipalities, and a worker 
commutes from the home municipality, i = 1, 2, …, n, to 
the work-place municipality, j = 1, 2, …, n. The observed 
commuting information is collected in the (n × n) 
commuting matrix, c = {cij}. A solution to a model would 
give the estimated commuting matrix, c~. There is also a 
corresponding (n × n) commuting-time matrix, t = {tij}. Let 
us define a (1 × n) unit row vector, u. The (n × 1) vector with 
the number of workers that lives in the municipalities equals 
the row sum of the commuting matrix, o = cu', and the 
(1 × n) vector with the number of jobs in the municipalities 
equals the column sum of the commuting matrix, d = uc. 
The existing spatial structure is captured in the form of 
matrices. Three dummy variables are used to classify that a 
commute may end within the home municipality, in another 
municipality within the same functional region, or in another 
region. When a commute ends within the home municipality 
kij = 1, otherwise kij = 0. If a commute ends in another 
municipality within the home region lij = 1, otherwise lij = 0. 
If the commute ends in another region mij = 1, otherwise 
mij = 0. This information is collected in the (n × n) regional 
dummy matrices k, l, and m, respectively. In this study, 
only links with a commuting time less than 150 minutes are 
included. This means that commuting on the other links, 
(c(t > 150) = 0), are ignored. To identify all links that are 
included in this study zones are created, and collected into 
the (n × n) zone matrix, z. In this matrix zij = 1 if tij ≤ 150, 
otherwise zij = 0.

3. Data
In Table 1 you find the first five and last five rows in the 

Excel file used as input. The data set is in an Excel file that 
you have to download to run the Matlab programs. It is 
available from the following address: www.his.se/commuting. 
Nevertheless, it is useful to illustrate the structure of the 
data in this paper. At that time (1998), Sweden was separated 
in  289  municipalities. Hence, there are  83,521  commuting 
links. Each link has its own row in the Excel file. For each 
link, the data contains information whether the commute 
is within a municipality, between municipalities within a 

Fig. 1: Interaction declines with distance 
Source: author´s elaboration
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region, or between regions, the commuting time, and the 
number of commuters. The Excel file only contains the white 
part of Table 1.

The data has several sources. The commuting information 
originates from the Labor Statistics based on administrative 
sources (RAMS) from Statistics Sweden. Also, the 
information regarding the spatial structure originates from 
Statistics Sweden. The commuting times come from The 
Swedish Road Administration.

In Tab. 2, descriptive statistics for the number of commuters 
per link are presented. In Tab.  3, you find descriptive 
statistics for the commuting time per link. These numbers 
are calculated using only the active links with a commute 
shorter than 150 minutes. In Tab. 2, you also find the number 
of active links, the number of links with zero commuters, and 
the total number of links, given that the commuting time is 

shorter than 150 minutes. The number of commuters and the 
commuting times are clearly different for commutes within 
a municipality, between municipalities within a region, 
and between regions. In this paper, commuting flows are 
separated into commuting within a municipality, between 
municipalities within a region, and between regions. This 
separation is based on that these commuting flows differ. The 
null hypotheses, that the relative commuting frequencies, 
cij / oi, for commuting within a municipality, between 
municipalities in a region, and commuting between regions 
are equal, have been tested and they are rejected.

4. Models, Matlab programs and results
Some spatial-interaction models are linear when written 

in logarithmic form. Fischer and Wang (2011) present the 
drawbacks related to the use of ordinary least squares to 

Tab. 1: An excerpt from the data file, but the file only contains the white part
Source: Statistics Sweden and the Swedish Road Administration; author´s calculation

Tab. 2: Descriptive statistics for commuting per link per commuting type 
Note: * Only commuting with t < 150 included 
Source: Statistics Sweden and the Swedish Road Administration; author´s calculation

Tab. 3: Descriptive statistics for commuting time (minutes) per link per commuting type 
Source: Statistics Sweden and the Swedish Road Administration; author´s calculation

Row From To kij lij mij tij cij

1 1 1 1 0 0 4.71 6,904

2 1 2 0 1 0 11.52 141

3 1 3 0 1 0 24.31 28

4 1 4 0 1 0 30.98 11

5 1 5 0 1 0 16.10 479

… … … … … … … …

83,517 289 285 0 0 1 209.64 225

83,518 289 286 0 0 1 236.85 3

83,519 289 287 0 0 1 216.61 19

83,520 289 288 0 0 1 219.08 2

83,521 289 289 1 0 0 67.13 10,549

Measure Within municipality Within region Between regions Sum

Min 761 1 1 –

Median 4,394 51 3 –

Mean 9,732 392 22 –

Max 266,980 19,647 6,050 –

Std. dev. 20,595 1,340 105 –

# active links* 289 2,087 9,911 12,287

# zero links* 0 81 8,413 8,494

# links* 289 2,168 18,324 20,781

Measure Within municipality Within region Between regions

Min   3.4   6.3   12.3

Median 13.0 31.4   89.6

Mean 17.3 33.8   90.4

Max 89.8 96.3 150.0

Std. dev. 13.6 15.7   33.9



2016, 24(2)	 MORAVIAN GEOGRAPHICAL REPORTS

63

2016, 24(2): 60–70	 MORAVIAN GEOGRAPHICAL REPORTS

63

estimate such a model. So, even though it may be tempting 
to estimate the logarithmic form of a spatial-interaction 
model using ordinary least squares, it should be avoided. 
In models of commuting it is preferred that the observed 
number of a) jobs in a municipality, and b) workers that 
live in a municipality (i.e. the data) both to be exactly equal 
to the estimates produced from the model. Olsson  (2002) 
writes that constrained models have the advantage in that 
“(by construction) the model outcome is consistent with 
actual in- and out-commuting.” In addition, we often want 
to include other constraints (e.g. time constraints). You can 
model the individual’s choice to commute, or the aggregate 
commuting pattern. A gravity model of the aggregated 
commuting pattern relates interaction to an origin weight 
function, a destination weight function, and a distance 
deterrence function (Sen and Smith, 2011). The aggregate 
commuting function derived from maximising entropy is 
equivalent in form to the one derived from a logit model of 
individual (discrete) choice (Anas,  1983; Mattsson,  1984). 
So, studying the commuting pattern by maximising entropy 
a) produces a solution similar in form to the one that follows 
from individuals choosing their commute, and also b) 
enforces structure to the model via constraints.

In this paper, the aggregate commuting pattern is 
modelled by maximising entropy. In this section, you find 
three models of commuting. The first model has only two 
constraints. The point of this model is not that it will 
replicate the commuting pattern well, but that this model 
contains the essence of the following models. Each model 
is fully presented, i.e. the program used to estimate the 
model is described and the results are presented, before 
the next model is introduced. The first model is the base to 
which spatial structure (e.g. functional region, origin and 
destination constraints) is gradually incorporated. This is 
straight forward given an understanding of the first model 
and the Matlab program used to solve it. In the following 
models, the ideas presented in the first model are just 
extended. The second model has six constraints, and the 
third model has 582 unique constraints. The ambition is to 
incorporate spatial constraints into the model and to better 
replicate the pattern illustrated in Figure 1. If you want to 
get a preview of what is ahead, you can compare Fig. 1 to 
Fig. 10. It is the third model that is the best, since it enforces 
many more constraints. The first two models are just used 
to get to the third model, in the easiest possible manner.

By construction, Model 3 does a better job replicating the 
commuting pattern. In Model 3, the balancing factors (i.e. 
constraint multipliers) for where workers live (i.e. the origin 
constraints) and work (i.e. the destination constraints) 
captures the spatial surrounding of locations. All workers in 
Sweden are included in the data, but if all workers and all 
firms could redo their choices, many choices would change. 
The observed commuting data is but one realisation out 
of many possible. It is an aggregate observation in time 
of the (random) discrete choices made by individuals and 
firms. One consequence of this randomness is that there 
are spatial dependencies, e.g. if relatively many from a 
municipality commute on one link, it follows that relatively 
fewer commute on the other links. This would be seen as 
deviations from the estimated pattern.

4.1 Model 1
The observed population equals the sum of all commuters, 

p = ∑i ∑j cij = ucu'. The Hadamard product sign, ° , is used 
for entrywise multiplication of matrices. The observed 

total commuting time equals r = ∑i ∑j cij tij = u(c ° t)u'. In 
the first model, two constraints enforce that the estimated 
population, p~ = uc~u', equals the observed population, and 
that the estimated total commuting time, r~ = u(c~ ° t)u', 
equals the observed total commuting time. In constrained 
gravity models the objective is to maximise the system 
entropy, ∑i ∑j cij ln(cij) – cij = − u(c~ ° ln(c~) – c~)u', subject to the 
constraints. Therefore, the primal formulation of the problem 
is to max L(c~, δ, γ), where the Lagrangian function is L(c~, δ, 
γ) = − u(c~ ° ln(c~) − c~)u' + δ(uc~u' − p) + γ(r − u(c~ ° t)u').

Let us call the Lagrangian multipliers, δ and γ, the proximity-
preference parameter and the distance-friction parameter, 
respectively. In this model, the proximity-preference 
parameter is a fixed factor for all commutes, and does not 
really reveal any preference for proximity. But, the name will 
make more sense in the following models. The Lagrangian 
written in this form highlights the constraints. But, to get to 
the dual formulation of the problem it is easier to use L(c~, 
δ, γ) = u(c~ ° ln(c~) + c~ + δc~ − γc~ ° t)u' − δp+γr. We can rewrite 
∂L/∂c~ = −ln(c~) + δ − γt = 0 as c~ = exp(δu'u − γt). Hence, 
commuting on a particular link equals cij = exp(δ − γtij). 
Inserting this in the primal form gives the dual form: 
minD(δ, γ), where D(δ, γ) = u exp(δu' u − γt)u' − δp+γr.

The Newton-Raphson iterative procedure is used to find 
the optimum, and you find a description of the procedure in 
Appendix 1 (see link to Supplementary material at the end of 
the article). The iterative procedure needs some parameter 
start values. Reasonable start values must fulfill one of the 
constraints, and here the population constraint is used, 
uc~u' − p = 0. If γ0 = 0 it follows that δ0 = ln(p / (uzu')). 
In this study all links where tij > 150 are ignored. This 
reduces the number of links from u(k + l + m)u' which 
is 83,521 to uzu' which is 20,781. With p = 3,847,782 the 
start value is equal to δ0 = 5.2212. Now, it is time to iterate 
from the start values towards the solution. The start values 
imply that commuting is not affected by commuting time. 
Hence, estimated commuting on links with long commuting 
time is bigger than observed commuting. Therefore, the 
estimated commuting flows use more time than is allowed. 
This implies that the distance friction parameter has to 
be raised. Raising the distance friction reduces estimated 
commuting flows, which leads to that too few persons work. 
It gives that the proximity-preference parameter has to be 
raised. And, this is sequentially repeated until the solution 
is found. If a constraint is violated in the opposite direction, 
the parameter estimate is adjusted accordingly.

As said, it is most likely that the estimated commuting flows 
do not fulfill the constraint on commuting time, r − u(c~ ° t)
u' = 0, at the start. The distance-friction parameter estimates 
are adjusted using the Newton-Raphson procedure. The 
partial derivatives are ∂D / ∂γ = − u(c~ ° t)u' + r = r − r~ and 
∂2D / ∂γ2 = u(c~ ° t ° t)u' = s~, which leads to the following 
adjustment scheme γ(n+1) = γn − ρ(r − r~n) / s~n. It is important 
to recalculate the commuting flows, before adjusting 
the proximity-preference parameter. The derivatives 
are ∂D / ∂δ = uc~u' − p = p~ − p and ∂2D / ∂δ2 = uc~u' = p~, 
which leads to the following adjustment scheme, 
δ(n+1) = δn − ρ(p~n − p) / p~n. In the first model, ρ = 1. It is 
important to recalculate the commuting flows, before starting 
over again. The program iterates until all constraints are 
fulfilled with extreme accuracy, since the run time is short.

4.1.1 The Matlab program

Now it is time to look at the Matlab program for Model 1. 
To make the reading easier, the program is included in 
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Appendix 2 (see Supplementary material). The structure of 
the first program is maintained in the models to come. First, 
the data file is read. In this section of the program u, t, and c 
are declared, and filled with values from the data. Then, the 
a priori information is calculated from the data, and the start 
values are set. In this part of the program, r, p, z, and the start 
values are calculated as described in the text above. Here, the 
estimated commuting flows using the parameter start values 
are calculated. The parameter start values and the value of 
the dual function are saved. This is done to later illustrate 
convergence. In the main iterative part of the program, each 
parameter is adjusted in relation to the constraint deviation. 
First, the distance-friction parameter is adjusted. Second, 
the proximity-preference parameter is adjusted. After each 
parameter adjustment the estimated commuting flows are 
recalculated. The new parameter values and the value of the 
dual function are saved. The end part of the program creates 
graphs, and saves the results to an Excel file. The Model 1 
program is adjusted in the following models to incorporate 
additional spatial information.

The mathematical notation in the program is for the most 
part as in the text, so it should be easy to follow. However, 
there are four minor exceptions. In the text the Hadamard 
product sign ° is used for entrywise multiplication of 
matrices. In Matlab .* multiply two matrices entrywise. The 
other three types of exceptions are illustrated by example. 
The proximity-preference parameter is delta in the program 
and δ in the text. The travel-time matrix is t in the text and t 
in the program. In the text p~ refers to the estimated working 
population, while p_tilde is used in the program.

The program is published on the following web address: 
www.his.se/commuting. This means that you do not have 
to retype the code to run the program, you can just use the 
published file. In order to run the program for the first model 
you must save the data and the program to your computer. 
It is recommended that you first save the Excel file to your 
Matlab folder. In the next step, you save the program file 
containing the first program into the same Matlab folder. 
Then start Matlab and run the program.

4.1.2 Results

In Figure  2 you find the estimated distance-friction 
parameter per iteration. In Figure 3 you find the estimated 
proximity-preference parameter per iteration. To keep the 
first Matlab program as simple as possible the value of the 
dual function and the parameter values are collected per 
iteration in the published program. The start values of the 
distance-friction parameter and the proximity-preference 
parameter is zero and  5.2212, respectively. This gives the 
start point  (5.2212,0) in Figure  4. In Figure  4, the thick 
line illustrates the path from the start point to the solution. 
The value of the dual function per iteration is presented in 
Figure 5. After about 15  iterations neither the parameters 
nor the value of the dual function change more than 
marginally. The model converges at the solution, where the 
distance-friction parameter is  0.1197 and the proximity-
preference parameter is 9.809.

However, nothing prevents us from saving all information 
during the approach to the solution. By doing some small 
adjustments in the Matlab program, it is possible to save the 
parameter values and the value of the dual function at every 
parameter adjustment, rather than per iteration. From 
the start point  (5.2212,0), the distance friction parameter 
is adjusted to  0.0075, leading to the point  (5.2212,0.0075) 
in Figure  4. Then the estimated commuting flows are 
recalculated and the proximity-preference parameter is 

adjusted to 6.1519, leading to the point (6.1519,0.0075). This 
ends the first iteration, and is seen as the first step from 
the start point following the thin line in Figure  4. Hence, 
iterating and saving results in this way gives a set of steps 
to the solution. It is of course also an option to just save the 
final solution values.

Fig. 2: Distance-friction parameter convergence
Source: author´s elaboration

Fig. 3: Proximity-preference parameter convergence
Source: author´s elaboration

Fig. 4: The two ways to the solution
Source: author´s elaboration

Fig. 5: The value of the dual function per iteration
Source: author´s elaboration



2016, 24(2)	 MORAVIAN GEOGRAPHICAL REPORTS

65

2016, 24(2): 60–70	 MORAVIAN GEOGRAPHICAL REPORTS

65

4.2 Model 2
Model 2 has six constraints, and they are similar to the two 

constraints present in Model  1. The idea is to incorporate 
more spatial information into the model. Some persons 
work within their home municipality, while others commute 
to another municipality within their home region, and 
some even commute to another region. Model  2 has three 
constraints replacing the Model 1 constraint enforcing that 
the estimated working population is equal to the observed 
population. The observed number of commuters within 
a municipality is equal to p1 = u(k ° c)u'. The observed 
number of commuters between municipalities within the 
home region is p2 = u(l ° c)u'. The observed number of 
commuters between regions is p3 = u(m ° c)u'. They are 
collected in the column vector p. In this study the working 
population is divided such that p1 = 2,812,614, p2 = 817,802 
and p3 = 217,366. To each constraint there is a proximity-
preference parameter, all collected in the column vector δ. In 
Model 2, three constraints replace the constraint regarding 
total commuting time present in Model 1. The observed total 
commuting time for commutes within a municipality equals 
r1 = u(k ° c ° t)u'. The observed total commuting time for 
commutes between municipalities within the home region 
is r2 = u(l ° c ° t)u'. The observed total commuting time for 
commutes between regions is r3 = u(m ° c ° t)u'. They are 
collected in the column vector r. To each time constraint 
there is a distance-friction parameter, and they are collected 
in the column vector γ. This model is like splitting Model 1 
into three completely separate parts. The primal form of the 
problem is max L(c~, δ, γ), where L(c~, δ, γ) = ∑6

s=0 Ls  and the 
Lagrangian parts Ls are defined in (1)–(7).

L0 = − u(c~ ° ln(c~) – c~)u'				    (1)

L1 = δ1(u(k ° c
~)u' − p1)				    (2)

L2 = δ2(u(l ° c
~)u' − p2)				    (3)

L3 = δ3(u(m ° c
~)u' − p3)				    (4)

L4 = γ1(r1 − u(k ° c
~ ° t)u')				    (5)

L5 = γ2(r2 − u(l ° c
~ ° t)u')				    (6)

L6 = γ3(r3 − u(m ° c
~ ° t)u')				    (7)

You find the three constraints for the number of commuters 
in  (2)–(4) and the three constraints on total commuting 
time in (5)–(7). This is similar to the earlier model, and the 
adjustment process to find the six Lagrangian multipliers is 
therefore straight forward. The derivative of the Lagrangian 
with respect to commuting gives the estimated commuting 
matrix c~ = exp(δ1k + δ2l + δ3m – (γ1k + γ2l + γ3m) ° t). 
By inserting this into the Lagrangian we get the 
dual formulation of the problem, min D(δ,γ), where 
D(δ,γ) = u exp(δ1k + δ2l + δ3m – (γ1k + γ2l + γ3m) ° t)
u' – δ'p + γ'r.

To find reasonable start values, assume that all distance-
friction parameters are zero and choose to enforce the 
three constraints regarding the number of commuters 
within the home municipality, between municipalities 
within the home region, and between the regions. 
Then the start values for the proximity preferences are 
δ1 = ln(p1 / u(k ° z)u')), δ2 = ln(p2 / (u(l ° z)u')), and 
δ3 = ln(p3 / (u(m ° z)u')), respectively. If you compare 
these start values to the start value in Model 1 you see 
the similarity. Collect the derivatives s~1 = u(k ° t ° t ° c

~)
u', s~2 = u(l ° t ° t ° c

~)u', and s~3 = u(m ° t ° t ° c
~)u’ in the 

column vector s~. Then the friction vector is adjusted 

using γ(n+1) = γn − ρ(r~n − r)./ s~n, where ./ is the symbol 
for piecewise division. The estimated commuting flows are 
recalculated before adjusting the proximity-preferences 
using δ(n+1) = δn − ρ(p~n − p)./ p~n. Also in Model  2 ρ = 1. 
Before iterating, the estimated commuting flows are 
recalculated once more.

4.2.1 The Matlab program

You find the program for Model  2 in Appendix  3 (see 
Supplementary material), and it is also available for 
downloading at www.his.se/commuting. The overall structure 
of the program is the same as for Model 1. However, Model 2 
uses more spatial information. Therefore the k, l, and m 
matrices are also read from the Excel file. With them the 
new necessary vectors p and r are calculated. In the main 
part of the program, the parameters are adjusted. First, the 
distance-friction vector is adjusted in relation to the relevant 
constraint deviation. In this part s is calculated. Second, the 
proximity-preference vector is adjusted. This is the same as 
the adjustment procedure used in Model 1. A comment on 
notation: In the text for example s~2 refers to the second value 
in s~. In the Matlab program s_tilde(2) does that job. This is 
the principle used for any vector or matrix.

4.2.2 Results

In Figure 6 you find the distance-friction parameters per 
iteration. In Figure  7 you find the proximity-preference 
parameters per iteration. At the start the distance-
friction parameters are set to zero, and the proximity-
preferences are 9.1832, 5.9328, and 2.4734, for commuting 
within a municipality (i.e. local), commuting between 
municipalities within a region (i.e. regional) and between 
regions, respectively. The solution for the distance-friction 
parameters are  0.0294,  0.1027, and  0.0483. The solutions 
for the proximity-preference parameters are 9.6335, 8.5289, 
and 6.1309.

Fig. 6: Distance-friction parameter convergence
Source: author´s elaboration

Fig. 7: Proximity-preference parameter convergence
Source: author´s elaboration
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In Figure 8 you find the proximity preference and distance 
friction pairs from the start to the solution. Here the 
convergence process starts from points along the x-axis. In 
Fig. 9, you find the value of the dual function per iteration.

The solution is found after about  15  iterations. Then 
nothing much happens to the parameters and the value 
of the dual function. At the solution, the value of the dual 
function is smaller for Model  2 compared to the value for 
Model  1. This is expected, since Model  2 enforces more 
constraints. The first two models are only presented as 
the way to the final model. However, we can compare 
the results from Model  1 and Model  2 anyway. Both the 
proximity-preference parameter and the distance-friction 
parameter are higher in Model  1. Model  1 replicates the 
commuting pattern (Fig. 1) with one exponential function. 
The proximity-preference parameter is related to the 
intersection with the y-axis. The distance-friction parameter 
is related to the decline of commuting as commuting time is 
increased. This is illustrated in in Figure 10 by the dotted 

line. Model 2 replicates the pattern using three exponential 
functions. This is seen in Figure  10 as one solid line for 
commuting within the home municipality, one solid line 
for commuting between municipalities within the home 
region, and one solid line for commuting between regions. 
Model  3  has  582  unique constraints. In that model, the 
pattern is replicated using 20,781 (out of maximum 83,521) 
exponential functions.

4.3 Model 3
Model 2 has three distance-friction parameters and three 

proximity-preference parameters. Those parameters (and 
constraints) are also present in Model  3, but in addition 
Model  3 also has commuting origin- and destination 
constraints. The third model is max L(c~, α, β, δ, γ) = ∑8

s=0 
Ls, where the Lagrangian parts, Ls, are found in (8)–(16). 
Model 2 has three constraints for the amount of commuting, 
and they are included in the same way in Model 3, (11)–(13). 
Model 2 has three time constraints, and they are included 
in the same way in Model 3, (14)–(16). Model 3 in addition 
enforces that the estimated number of workers that live 
in each municipality is equal to the observed number, 
o = cu' = c~u'. This adds 289 origin constraints, (9). However, 
only 288 origin constraints provide new information. The 
three constraints on the number of commuters together 
enforce that the estimated number of commuters is equal 
to the observed working population. This makes the 289th 
origin constraint redundant, since it will be enforced by 
the other constraints. To each origin constraint there is a 
Lagrangian multiplier which is called a push factor. They are 
collected in the column vector α. Because of programming 
convenience all  289  destination constraints are used, but 
one origin is used as base, here α1 = 0. Model 3 also enforces 
that the estimated number of jobs in each municipality is 
equal to the observed number of jobs, d = uc = uc~. This 
adds  289  destination constraints,  (10). As for the origin 
constraints, one of the destination constraints is redundant, 
since only 288 destination constraints provide information. 
To each destination constraint there is a Lagrangian 
multiplier which is called a pull factor. They are collected 
in the row vector β. Because of programming convenience 
all  289  destination constraints are used, but one pull 
factor is used as base, here β1 = 0. The complete model 
now has 582 constraints. This is the setup in the Matlab 
program in Appendix 4 (see Supplementary material).

L0 = − u(c~ ° ln(c~) – c~)u'	 			   (8)

L1 = u(α ° (c
~u' − o))				    (9)

L2 = (β ° (uc~ − d))u'			   (10)

L3 = δ1(u(k ° c
~)u' − p1)			   (11)

L4 = δ2(u(l ° c
~)u’ − p2)			   (12)

L5 = δ3(u(m ° c
~)u’ − p3)			   (13)

L6 = γ1(r1 − u(k ° c
~ ° t)u')			   (14)

L7 = γ2(r2 − u(l ° c
~ ° t)u')			   (15)

L8 = γ3(r3 − u(m ° c
~ ° t)u')		  (16)

The program needs reasonable start values. It is assumed 
that all distance-friction parameters, push- and pull factors 
are zero. The start values for the proximity preferences 
are δ1 = ln(p1 / u(k ° z)u')), δ2 = ln(p2 / (u(l ° z)u')), and  
δ3 = ln(p3 / (u(m ° z)u')), respectively, which is exactly the 
same as is used in Model 2.

Fig. 8: The paths to the solution 
Source: author´s elaboration

Fig. 9: The value of the dual function per iteration 
Source: author´s elaboration

Fig. 10: The principal result of Model 1 and Model 2
Source: author´s elaboration
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The partial derivative of the Lagrangian with respect 
to commuting gives the estimated commuting matrix 
c~ = exp(αu + u'β + δ1k + δ2l + δ3m – (γ1k + γ2l + γ3m) ° t) 
Inserting this into the Lagrangian gives the 
dual form, min D(α,β,γ,δ), where D(α,β,γ,δ) = u 
exp(αu + u’β + δ1k + δ2l + δ3m – (γ1k + γ2l + γ3m) ° t)
u' – α'o – βd' – δ'p + γ'r.

Model 3 has four groups of parameters, and each group 
is adjusted separately. In the program the push factors are 
adjusted first. The origin constraints are constraints on 
the number of commuters. In that way they are similar 
to the three constraints on the number of commuters 
within the home municipality, between municipalities 
within the home region, and between regions. Therefore, 
how to adjust the push factors are easily inferred. The 
push factors are adjusted using α(n+1) = αn – ρ(o~n – o)./ o~n . 
After recalculating the estimated commuting flows the pull 
factors are adjusted, β(n+1) = βn – ρ(d

~
n – d)./ d

~
n , in a similar 

way. The estimated commuting flows are recalculated 
before the distance-friction vector is adjusted. At the end 
of the iteration, the proximity-preference vector is adjusted 
and the estimated commuting flows are recalculated once 
more. The distance-friction vector and the proximity-
preference vector are adjusted as described above in 
Model 2. Compared to the previous models, Model 3 is more 
complex. In Model 3 the number of constraints is larger, and 
the constraints are interwoven. For that reason the relative 
adjustment factor is reduced for convergence, ρ = 0.2. It is 
possible to rerun the program for other adjustment factors, 
and trace the way to the solution in each case.

4.3.1 The Matlab program

You find the Matlab program for Model 3 in Appendix 4 
(see Supplementary material). This program is also available 
to download from www.his.se/commuting. The program 
has grown to include the adjustment of the push and pull 
factors. In the main part of the program, the parameters 
are adjusted. First, the push factors are adjusted. Second, 
the pull factors are adjusted. Third, the distance-friction 
parameter vector is adjusted. Fourth, the proximity-
preference parameter vector is adjusted. After a set of 
parameters has been adjusted, the estimated commuting 
flows are recalculated. In the program it is convenient to 
keep all  289  push factors and  289  pull factors. Hence, 
all 289 factors are adjusted using the same procedure, but 
then one of each factor is set to zero.

4.3.2 Results

At the solution, the distance-friction parameter for 
commuting within a municipality is  0.0248, the distance-
friction parameter for commuting between municipalities 
within a region is  0.0958, and the distance-friction 
parameter for commuting between regions is 0.0514. You 
find the convergence process for the distance-friction 
parameters in Figure 11.

At the solution, the proximity-preference parameter for 
commuting within a municipality is 8.5147, the proximity-
preference parameter for commuting between municipalities 
within a region is  7.4679, and the proximity-preference 
parameter or commuting between regions is  5.4938. 
The convergence processes for the proximity-preference 
parameters are illustrated in Figure  12. In Figure  13 the 
proximity-preference parameter and distance-friction 
parameter pairs from the start (along the x-axis) to the 
solution are illustrated. In the background, the  288  push 
and 288 pull factors are adjusted as well.

You find the value of the dual function per iteration in 
Fig. 14. Little happens to the parameter values and value of 
the dual function after 200 iterations. However, by iterating 
more the solution is pinpointed. The program is set to 
do  500  iterations. The solution value of the dual function 

Fig. 11: Distance-friction parameter convergence
Source: author´s elaboration

Fig. 12: Proximity-preference parameter convergence 
Source: author´s elaboration

Fig. 13: The paths to the solution 
Source: author´s elaboration

Fig. 14: The value of the dual function per iteration 
Source: author´s elaboration
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is smaller for Model  3. This is as expected, since Model  3 
enforces many additional constraints.

4.4 Model 3 alternatives
In Model  3 the first municipality is used as base case, 

and hence both α1 and β1 are set to zero. Then, every other 
parameter is estimated in relation to them. Of course, any other 
municipality could serve as base. Using another municipality as 
base implies setting two other parameters to zero. This would 
give other solution push factors, pull factors, and proximity-
preference parameters. It is their combined effect that is 
interesting. The combined effect remains the same in all cases. 
Moreover, the distance-friction vector is the same in all cases.

Another alternative would be to for example set β1 
and δ3 to zero. Then the model has 289 origin constraints, 
and 289 push factors. To find start values all pull factors, 
all distance-friction parameters, and the two proximity-
preference parameters are set to zero. Then it follows 
that α0 = ln(o / 289) in the case that all destinations are 
included for all origins. In this study the commuting time 
from a municipality should be smaller than  150  minutes 
in order for a destination to be included in the commuting 
zone. Then the start values are α0 = ln(o./ (zu')). Obviously, 
you could have chosen another of the pull factors and 
push factors instead of β1 and another of the proximity 
preferences instead of  δ3. This would give other push 
factors, pull factors, and proximity preference parameters. 
However, their combined effect is the same, nevertheless. 
The proximity-preference vector differs between model 
set ups, however the proximity-preference parameter 
differences are maintained in all set ups. Moreover, the 
distance-friction vector is the same in all cases.

Sometimes you see studies that set no parameter value 
to zero, i.e. all constraints are used, even though in Model 3 
two constraints contain no new information. This works, 
since the parameters are estimated in relation to each other. 
In such a case, there are several sets of feasible start values 
to choose from. The solution push factors, pull factors, 
and proximity-preference parameters change with start 
values. However, this procedure gives the same parameter 
estimates for distance friction and proximity-preference 
parameter differences. Still, it is not good practice to include 
constraints with no information. Under such circumstances 
one needs to be careful when interpreting the results. When 
that is done properly, you find that the results are the same 
as you get if you only use constraints with real information.

4.5 Model comparisons
In this paper, three models of commuting have been 

presented. The idea was to start from a simple model, and 
gradually add spatial constraints to the model to better 
capture reality. It is interesting to see how well the models 
estimate the observed commuting pattern.

In Tables 4–6, you find descriptive statistics for (c.)⁄c ̃  
for Model 1–3, respectively. For example, the median value 
for observed commuting as a share of estimated commuting 
within a municipality is  1.7, for Model  1 (Tab.  4). The 
corresponding median values for Model  2 and Model  3 
are 0.5 (Tab. 5) and 1.0 (Tab. 6), respectively. Note that the 
median gets closer and closer to one. This is the case also 
for commuting between municipalities within a region, and 
for commuting between regions. It is also the case that the 
standard deviation is smaller in Model  3 than in Model  1. 
Model 3 has many more constraints and therefore performs 
better. This is also seen by that the means converge.

In Table 6, the standard deviation is relatively large for 
commuting between regions. One possible explanation for 
this is that there are some links that deviate from the pattern 
due to commuting by other means than car, i.e. train. Such 
flows are not accurately captured in this model.

5. Discussion and conclusion
Given the third model, you can create a version of the 

model by altering the set-up. You could for example just 
use one commuting time constraint instead of three. 
That means that you estimate only one distance-friction 
parameter. You could also remove the constraints for the 
number of commuters within a municipality, between 
municipalities within a region, and between regions. 
That means that you estimate no proximity-preference 
parameters. In such a version of the model, you must allow 
all 289 push- and pull-factors to adjust using the described 
procedure. The resulting distance-friction parameter 
is  0.1406. For this version of the model the median 
number of c / c~ is  2.0,  0.5,  31.0 for commuting within a 
municipality, between municipalities within a region, and 
between regions, respectively. This can be compared to the 
corresponding numbers for Model 3 in Table 6. 

As expected, Model  3 outperforms a version of the 
model using less constraints. It is also possible to alter 
Model  3 in other ways. Model  3 uses  20,781  links out of 
the maximum 83,521 links, and some of those links are not 
active (Table 2). It is straight forward to change the code 
such that only the 12,287 active links out of the 20,781 links 

Tab.  4: Descriptive statistics for the predictive 
performance of Model 1. Source: author´s calculation

Tab.  5: Descriptive statistics for the predictive 
performance of Model 2. Source: author´s calculation

Tab.  6: Descriptive statistics for the predictive 
performance of Model 3. Source: author´s calculation

Measure Within 
municipality

Within 
region

Between 
regions

Min 0.2 0.0 0.0

Median 1.7 0.1 8.9

Mean 62.0 0.7 1,298

Max 6,472 59.4 655,370

Std. dev. 447.6 2.7 11,985

Measure Within 
municipality

Within 
region

Between 
regions

Min 0.1 0.0 0.0

Median 0.5 0.3 0.7

Mean 1.0 1.2 3.3

Max 21.6 90.5 687.8

Std. dev. 1.8 3.9 16.7

Measure Within 
municipality

Within 
region

Between 
regions

Min 0.8   0.0     0.0

Median 1.0   0.6     0.8

Mean 1.1   0.9     2.6

Max 2.8 31.4 661.1

Std. dev. 0.2   1.5   10.5
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are used (c~ (c = = 0) =0). The resulting estimates for the 
distance-friction parameters do not differ much between 
these two versions of Model 3. Nothing prevents us from 
adding more constraints to Model  3. You could add, for 
example, housing expenditure and income constraints. 
Such models and results are discussed in Olsson (2015).

Hopefully, this paper has stimulated you into modelling 
spatial interaction. When a model like Model  3 has been 
solved, you have a set of distance-friction parameters. With 
them you can calculate accessibility measures to incorporate 
spatial aspects into different types of studies (e.g. the 
literature presented in the Introduction). Let us assume 
that we want to look at the accessibility to workers. This 
would be one important variable to consider when studying, 
for example, how easy it is to find someone to fill a vacancy. 
Johansson et al. (2002, 2003) suggest that one separates the 
total accessibility into three parts: accessibility within the 
municipality, accessibility in other municipalities within 
the region, and accessibility in other regions. Such spatial 
decomposition of the total accessibility is useful in empirical 
studies, since they likely are of unequal importance. In 
this study, the commuting pattern was in focus. But not all 
persons work, e.g. the unemployed, the retired, students, 
etc. The non-working part of the population also interacts 
spatially. Although not part of this study, such spatial 
interactions are also interesting to model. Moreover, those 
individuals are often included in the accessibility measures 
(e.g. as potential workers or customers, depending on the 
focus of the study). Such a spatial decomposition, moreover, 
does not acknowledge that competition also varies across 
locations. Geurs and van Wee  (2004) identified several 
ways to introduce competition aspects into the accessibility 
measures, and one way would be to use the balancing factors 
of the solution to the gravity model (from α and β).
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