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Abstract
Cultivated terraces are phenomena that have been protected in some areas for both their cultural heritage and food 
production purposes. Some terraced areas are disappearing but could be revitalised. To this end, recognition techniques 
need to be developed and terrace registers need to be established. The goal of this study was to recognise terraces using deep 
learning based on Lidar DEM. Lidar data is a valuable resource in countries with overgrown terraces. The U-net model 
training was conducted using data from the Slovenian terraces register for southwestern Slovenia and was subsequently 
applied to the entire country. We then analysed the agreement between the terraces register and the terraces recognised by 
deep learning. The overall accuracy of the model was 85%; however, the kappa index was only 0.22. The success rate was 
higher in some regions. Our results achieved lower accuracy compared to studies from China, where similar techniques 
were used but which incorporated satellite imagery, DEM, as well as land use data. This study was the first attempt at 
deep learning terrace recognition based solely on high-resolution DEM, highlighting examples of false terrace recognition 
that may be related to natural or other artificial terrace-like features.

Keywords: cultivated terraces, deep learning, landscapes, digital elevation model, feature detection, Slovenia

Article history: Received 29 August 2023, Accepted 10 February 2024, Published 31 March 2024

1. Introduction
People	 build	 terraces	 into	 slopes	 to	 gain	 agricultural	 land,	

reduce	 soil	 erosion,	 reduce	 runoff,	 retain	 soil	 moisture,	 improve	
productivity,	 and	 provide	 gravity	 irrigation	 (Kladnik	 et	 al.,	 2005;	
Cicinelli	et	al.,	2021;	Slámová	et	al.,	2015;	Varotto	et	al.,	2019;	Zhao	
et	al.,	2021).	A	terrace	comprises	a	flat	or	slightly	sloping	surface	of	
varying	width	that	is	cultivated	and	a	terrace	slope	(bank)	of	varying	
height	 (Ažman	Momirski,	 2008;	 Kladnik	 et	 al.,	 2016b).	 Lu	 et	 al.	
(2023,	p.	2)	defined	terraces	as	“agricultural	land	with	strip	or	wavy	
sections	built	on	slopes	greater	than	2°	along	the	contour	direction”.	
These	cultivated	landscapes	can	be	defined	as	a	complex	landscape	
system	 influenced	 by	 various	 natural	 and	 socio-geographical	
factors.	Cultivated	terraces	(also	cultural	or	anthropogenic	terraces)	
were	originally	often	intended	for	agriculture	and	can	be	described	
in	most	 cases	 as	 agricultural	 terraces.	 They	 also	 have	 invaluable	
cultural,	 historical,	 ecological,	 aesthetic,	 touristic,	 and	 scientific	
value	 (Camera	 et	 al.,	 2018;	Djuma	 et	 al.,	 2020;	 Ferro-Vázquez	 et	
al.,	2017;	Terkenli	et	al.,	2019;	Zoumides	et	al.,	2017).

Cultivated	terraces	vary	according	to	the	period	of	origin,	natural	
conditions,	form,	land	use,	ownership,	etc.	Many	countries	feature	
cultivated	 terraces	 (Berčič	 &	 Ažman-Momirski,	 2020;	 Cicinelli	
et	al.,	2021;	Jinwen	&	Yuanyan,	2012;	Kladnik	et	al.,	2017a;	Slámová	
et	al.,	2017;	Varotto	et	al.,	2019).	They	are	quite	significant	in	some	

areas,	 where	 entire	 stretches	 of	 land	 are	 designated	 as	 terraced	
landscapes,	while	 they	may	be	only	visible	upon	closer	 inspection	
elsewhere	(Kladnik	et	al.,	2016b).	Terraces	can	be	active,	inactive,	
or	 a	 combination	 of	 both	 (Berčič,	 2016).	 Terraced	 landscapes	 are	
disappearing	 in	 places	 due	 to	 overgrowth	 (see	 also	 Gabrovec	
&	Kumer,	2019;	Moreno-de-las-Heras	et	al.,	2019)	or	inappropriate	
management;	however,	they	have	been	recognised	as	an	important	
landscape	 element	 that	 needs	 to	 be	 protected	 and	 considered	 for	
revitalisation.	 Still,	 no	 clear	 criteria	 for	 identifying	 terraces	 have	
been	developed	and	the	management	system	is	still	fragmented	in	
some	areas,	for	example,	in	Slovenia	(Kladnik	et	al.,	2017b).	Land	
abandonment	and	ageing	of	the	owners	are	some	of	the	reasons	for	
the	poor	maintenance	of	terraces	(Tarolli	et	al.,	2019).

In	 order	 to	 efficiently	 combat	 the	 degradation	 of	 terraces	 in	
general,	precise	registers	are	needed	 that	show	the	 location	and	
status	of	cultivated	terraces.	Maps	are	important	for	understanding	
the	 landscape	 (Gašperič,	 2023);	 the	 overview	 of	 the	 locations	 of	
cultivated	 terraces	 is	 the	 basis	 for	 analyses	 of	 their	 ecological,	
social,	and	economic	importance	(Ferrarese	et	al.,	2019)	and	can	
also	indicate	past	agricultural	land	(Berčič,	2016).

Current	 data	 on	 terraced	 landscapes	 are	 not	 comprehensive.	
In	 the	 case	 of	 Slovenia,	 some	 cultivated	 terraces	 overgrown	
by	 vegetation	 were	 not	 recorded	 in	 the	 photo	 interpretation,	
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topographic	map	analysis,	and	fieldwork	in	the	earlier	research	by	
Kladnik	et	al.	(2016b).	Therefore,	an	important	part	of	overgrown	
terraces	 might	 be	 missing	 and	 the	 most	 appropriate	 mapping	
methods	 using	 different	 datasets	 are	 still	 being	 developed.	
A	review	of	past	studies	(see	the	following	section	for	details)	has	
revealed	some	gaps	and	opportunities	for	research:

•	 The	 deep	 learning	 recognition	 of	 cultivated	 terraces	 based	
solely	on	a	digital	elevation	model	has	never	been	applied	and	
tested	for	its	robustness;

•	 Information	on	what	kind	of	false	recognition	(false	positives)	
and	non-recognition	(false	negatives)	can	occur	is	still	missing	
for	 different	 regions	 of	 the	world,	 including	 the	 territory	 of	
Slovenia;	and

•	 Recognition	 approaches	 based	 on	 digital	 elevation	 models	
(DEM)	can	be	useful	(and	often	the	only	possible	method)	in	
vegetated	areas	and	countries	where	visual	satellite	or	aerial	
imagery	is	less	suitable	for	relief	feature	recognition.

To	 this	 end,	 our	 study	 focused	 on	 determining	 the	 optimal	
methodological	 approach	 for	 cultivated	 terraces	 recognition.	The	
main	objective	 of	 this	 study	 is	 to	develop	and	 test	 deep	 learning	
methods	 capable	 of	 automatically	 recognising	 cultivated	 terraces	
based	solely	on	a	high-resolution	(1	m)	digital	elevation	model.	The	
study	 also	 examines	 the	 modelling	 results,	 points	 out	 potential	
problems,	and	provides	suggestions	on	how	to	improve	the	training	
labels	and	modelling	settings	for	further	deep	learning	recognitions.	
Such	approaches	have	not	been	used	in	Slovenia	or	anywhere	else	
before,	meaning	the	expected	results	are	hard	to	predict.

It	should	be	noted	that	since	the	current	register	of	cultivated	
terraces	in	Slovenia	is	 incomplete	in	some	places	where	terraces	
are	 overgrown	 by	 dense	 vegetation,	 this	 also	 provides	 a	 real-
life	scenario	to	test	 the	robustness	of	 the	deep	 learning	to	noisy	
training	 labels.	 This	 is	 an	 important	 computer-science	 research	
question	 for	 many	 recognition	 scenarios	 where	 accurate	 labels	
are	 hard	 to	 obtain.	 In	 addition,	 the	 results	 of	 the	 analysis	 can	
deliver	 important	 country-wide	 information	 on	 the	 location	 of	
unregistered	terraces.

2. Theoretical background
In	 general,	 a	 number	 of	 international	 projects	 (Ferrarese	

et	al.,	2019;	Scaramellini	&	Varotto,	2008)	and	studies	on	terraces	
have	 been	 done	 from	 different	 perspectives	 (Brown	 et	 al.,	 2020;	
Camera	et	al.,	2018;	D.	Chen	et	al.,	2021;	Cicinelli	et	al.,	2021;	Deng	
et	 al.,	 2021;	Varotto	 et	 al.,	 2019;	Zoumides	 et	 al.,	 2017).	To	 raise	
awareness	about	the	importance	of	terraces,	the	Honghe	Declaration	
was	adopted	worldwide	in	2010	(Jinwen	&	Yuanyan,	2012).	There	
have	been	many	conservation	efforts,	analyses,	and	registration	of	
terraces	around	the	world,	e.g.	in	Peru	(Tillmann	et	al.,	2020),	China	
(Cao	et	 al.,	 2020,	2021;	Zhao	 et	 al.,	 2021),	 Japan	 (Kuroda,	 2020),	
Italy	(Pijl	et	al.,	2021),	and	Slovenia	(Kladnik	et	al.,	2016b,	2017a).	
In	 2010,	 the	 International	 Terraced	 Landscapes	 Alliance	 (ITLA)	
was	 established.	 Civil	 initiatives	 seek	 to	 recognise,	 protect,	 and	
conserve	 terraced	 landscapes,	 and	 some	 terraced	 landscapes	have	
been	 inscribed	 on	 the	World	Heritage	 List	 (see	Ažman	Momirski	
&	Berčič,	2016;	Kladnik	et	al.,	2017a).

Terrace	 recognition	 using	 satellite	 imagery	 was	 performed	 by	
Zhang	et	al.	(2017).	Their	analysis	used	the	Fourier	transformation,	
edge	characteristics,	and	a	template	matching	algorithm.	Sun	et	al.	
(2019)	used	satellite	imagery	to	create	a	classification	of	terraced	
landscapes	 by	 using	 segmentation	 and	 k-nearest	 neighbour	
classification.	 Diaz-Varela	 et	 al.	 (2014)	 used	 a	 digital	 surface	
model	 and	 several	 spectral	 layers	 created	 from	 a	UAV	 survey	 to	
perform	 an	 object-based	 image	 analysis	 and	 classification.	 As	
early	as	2008,	Ninfo	(2008)	used	Lidar	data	to	perform	a	terrace	
analysis	using	geoinformation	methods	to	detect	edges	on	a	slope.	
The	usefulness	of	Lidar	data	visualisations	and	analyses	has	been	

addressed	more	 frequently	 recently	 (e.g.	Alberti,	 2020;	Ferrarese	
et	 al.,	 2019;	 Romero-Martín	 et	 al.,	 2020;	 Tillmann	 et	 al.,	 2020).	
In	Italy,	a	curvature	analysis	of	the	Lidar	digital	elevation	model	
(DEM)	and	other	DEM-derived	variables	have	been	used	to	detect	
terrace	edges	(Ferrarese	et	al.,	2019).	A	similar	approach	was	used	
by	Cosner	 and	Tecilla	 (2020)	 and	Stralla	 et	 al.	 (2018).	Ferrarese	
et	al.	 (2019)	also	used	other	approaches,	 for	example,	visualising	
DEM	data	with	manual	mapping	of	terraces.	Godone	et	al.	(2018)	
determined	 terraces	 from	 Lidar	 data	 using	 a	 method	 based	 on	
the	 height	 and	 slope	 analysis	 technique	 developed	 by	 Scott	 and	
Pinter	 (2003)	when	studying	coastal	 terraces.	Berčič	 (2016)	used	
orthophoto	imagery,	land	use	layer,	and	relief	slope	(generated	based	
on	 LIDAR)	 to	 visually	 interpret	 terraces.	 Satellite	 imagery	 and	
DEM	were	used	to	detect	terraces	with	a	random	forest	classifier	
(Cao	 et	 al.,	 2021).	 Visual	 interpretation	 is	 still	 a	 very	 common	
approach	(Alberti,	2020;	Ažman	Momirski	&	Berčič,	2018;	Romero-
Martín	 et	 al.,	 2020;	Tillmann	 et	 al.,	 2020).	 In	 Slovenia,	 terraces	
have	been	documented	based	on	a	systematic	visual	examination	
of	 orthophotos,	 topographic	 maps,	 and	 fieldwork	 (Kladnik	
et	al.,	2016a;	Kladnik	et	al.,	2016b;	Šmid	Hribar	et	al.,	2017).

In	the	last	two	decades,	more	and	more	deep	learning	methods	
have	 been	 used	 to	 solve	 various	 scientific	 problems.	 They	 have	
proven	 to	 be	 applicable	 in	 cases	 where	 classical	 models	 have	
not	 been	 able	 to	 solve	 the	 problem	 (Alavi	 et	 al.,	 2016).	 Image	
analysis	using	computer	vision	methods	(e.g.	convolutional	neural	
networks)	is	a	relatively	new	interdisciplinary	field	that	is	growing	
in	popularity,	especially	for	the	analysis	of	visual	spectrum	images	
(Buscombe	&	Ritchie,	2018;	Redmon	et	al.,	2016;	Ren	et	al.,	2015).	
These	 methods	 have	 also	 been	 used	 in	 medicine	 (Ronneberger	
et	 al.,	 2015)	 and	 remote	 sensing	 imagery	 (Chen	 et	 al.,	 2019;	
Wurm	et	al.,	2019).	In	terms	of	the	type	of	structures	(cultivated	
terraces)	we	want	to	recognise	in	our	study,	they	are	mostly	areas	
of	 different	 shapes	 and	 sizes	with	 certain	 textural	 features.	For	
this	type	of	data,	semantic	segmentation	models	have	been	utilised	
with	great	success.	Recently,	studies	on	terraces	recognition	with	
deep	learning	based	on	satellite	imagery	have	been	conducted	for	
loess	plateaus	in	China	(Lu	et	al.,	2023;	Zhao	et	al.,	2021).	Lu	et	al.	
(2023)	and	Zhao	et	al.	(2021)	introduced	deep	learning	methods	for	
recognising	terraces	using	satellite	imagery	and	optimising	their	
results	with	the	help	of	predefined	masking	(e.g.	to	eliminate	flat	
areas	with	DEM	or	non-agricultural	areas	with	a	land	use	map).	
A	 preliminary	 study	 on	 the	 recognition	 of	 terraces	 with	 deep	
learning	based	on	Lidar	data	was	also	conducted	for	southwestern	
Slovenia	by	Glušič	et	al.	(2021).

3. Methods and data
The	study	modelled	cultivated	terraces	based	on	a)	an	existing	

Slovenian	 register	 of	 cultivated	 terraces	 (Kladnik	 et	 al.,	 2016b);	
and	b)	a	Lidar	digital	elevation	model	(provided	by	the	Slovenian	
Environment	Agency;	Triglav	Čekada	&	Bric,	2015).	The	modelling	
was	 conducted	 in	 four	 steps	 (see	Fig.	 1).	First,	we	prepared	 the	
data	 of	 DEM	 and	 the	 current	 terraces	 register	 as	 described	 in	
section	3.2.	Then,	we	tested	a	deep	model	on	a	subset	of	the	data	
(this	part	was	further	divided	into	training,	validation,	and	testing	
stages)	 as	 described	 in	 section	 3.3.	 In	 the	 last	 step,	 described	
in	3.4,	we	applied	the	model	to	the	entire	country	and	evaluated	
the	 country-wide	 results	 in	 two	 phases.	 In	 the	 first	 phase,	 we	
quantitatively	examined	the	input	and	result	layers;	in	the	second	
phase,	we	 systematically	 examined	 the	 result	 layer	qualitatively	
(visually)	and	analysed	discrepancies.

3.1 Research area and basic characteristics of cultivated terraces
Slovenia	 (Fig.	 2)	 is	 a	 diverse	 country,	 even	 at	 the	 European	

level,	as	different	landscape	regions	intertwine	here,	namely	the	
Alps,	 the	Pannonian	Basin,	 the	Mediterranean,	 and	 the	Dinaric	
Alps	 (Ciglič	&	Perko,	2013).	Almost	 two-thirds	of	 the	country	 is	
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characterised	by	hills	and	mountains.	More	than	90%	of	the	area	
is	covered	by	loose	sediments	and	sedimentary	rocks;	the	greatest	
part	 of	 the	 country	 is	 composed	 of	 limestone.	 The	 country	 has	
a	 sub-Mediterranean	 climate	 in	 the	 southwest	 and	 a	 temperate	
continental	climate	in	the	central	and	eastern	part	and	a	montane	
climate	 in	 the	northwest	 and	north.	The	 country	 has	 abundant	
water	sources	and	 forests	cover	approximately	 two	 thirds	of	 the	
area;	the	widest	spread	form	of	natural	vegetation	are	beech	forests.	
Slovenia	has	just	over	2	million	inhabitants	(Perko	et	al.,	2020).

Terraced	landscapes	in	Slovenia	have	been	analysed	in	the	past	
in	the	project	‘Terraced	Landscapes	in	Slovenia	as	Cultural	Values’	
(Kladnik	et	al.,	2016a;	Kladnik	et	al.,	2016b,	2017a;	Šmid	Hribar	
et	al.,	2017)	as	well	as	in	other	studies	(Ažman	Momirski,	2008,	2019;	
Ažman	Momirski	&	Berčič,	 2016;	Berčič,	 2016),	 constituting	 an	
important	basis	for	further	research	with	new	methods.

The	construction	of	terraces	in	Slovenia	can	be	divided	into	two	
parts.	Traditionally,	terraces	have	been	built	in	the	Mediterranean	
parts	of	the	country	at	least	since	the	time	of	the	Roman	Empire	
for	 the	 cultivation	 of	 olive	 trees	 and	 vineyards.	 Until	 the	 19th	

century,	 the	 terraced	 slopes	 were	 built	 with	 stones,	 but	 from	
then	onwards,	newer	slopes	were	built	without	stones	and	were	
overgrown	with	grass.	Land	use	also	 changed	 in	different	 eras.	
Before	 the	 appearance	 of	 phylloxera,	 the	 terraces	 had	 a	mixed	

land	use	with	combined	vineyards	and	fields	on	the	same	terrace.	
Later,	the	fields	were	replaced	by	vineyards	and	orchards	planted	
on	the	banks	of	the	terraces.	With	the	intensification	of	agriculture	
in	Yugoslavia,	terracing	also	became	more	common	in	other	parts	
of	 the	 country.	While	 some	of	 the	 old	 terraces	 on	unfavourable	
slopes	were	abandoned,	mostly	in	the	period	from	1963–1990	due	
to	the	depopulation	of	the	countryside,	many	new	terraces	were	
created	with	the	help	of	machines	and	are	used	almost	exclusively	
for	viticulture	(Titl,	1965;	Kladnik	et	al.,	2016b,	2017a).

According	to	Kladnik	et	al.	(2016b),	terraces	in	Slovenia	occur	
from	0	m	to	almost	1,200	m	above	sea	 level,	with	the	majority	
of	them	located	in	Mediterranean	parts	of	the	country.	They	are	
most	 commonly	 found	 at	 a	 height	 between	 200	m	 and	 300	m	
on	 flysch	 rocks	 on	 slopes	 between	 15.1%	 and	 30%.	 The	width	
of	the	terraces	can	range	from	around	2	metres	on	steep	slopes	
to	50	metres	on	flatter	terrain,	while	their	length	can	vary	from	
around	10	metres	to	several	hundred	metres	 in	newer	terraces	
(Drobnjak,	1989).

3.2 Input data
The	model	for	the	recognition	of	terraces	was	created	by	using	

the	DEM	and	vector	layer	of	the	terraces	register.	The	DEM	was	
available	with	a	resolution	of	1	m	and	provided	by	the	Slovenian	

Fig. 1: Overview of the study workflow
Source: authors’ conceptualisation

Fig. 2: Slovenian landscape types and location of Slovenia
Source: authors’ elaboration based on Perko et al. (2021)
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Environment	 Agency.	 The	 DEM	 layer	 is	 based	 on	 the	 Lidar	
point	 cloud	 with	 a	 ground	 return	 point	 density	 of	 at	 least	 0.5	
points	/	m2	and	at	least	15	cm	of	vertical	precision	(Triglav	Čekada	
&	Bric,	 2015).	The	 vector	 layer	 of	 terraces	 register	was	 created	
by	 manually	 digitising	 orthophotos	 and	 topographic	 maps,	 and	
through	fieldwork	done	by	the	Research	Centre	of	the	Slovenian	
Academy	of	Sciences	and	Arts	(Kladnik	et	al.,	2016b).	The	layers	of	
orthophotos	(0.25	m	and	0.5	m	resolution)	and	various	topographic	
maps	 were	 provided	 by	 the	 Surveying	 and	 Mapping	 Authority.	
In	 the	 evaluation	 process,	 a	 generalised	 land-use	 information	
(provided	by	the	Ministry	of	Agriculture,	Forestry	and	Food)	were	
used	for	analysis	of	relationships	between	terraces	and	land-use.	
The	generalised	categories	for	land	use	were	defined	on	the	basis	
of	 vegetation	 height	 and	 land	 use;	 the	 combining	 of	 land	 use	
categories	 was	 done	 according	 to	 Gabrovec	 and	 Kumer	 (2019).	
A	 forest	 mask	 (also	 provided	 by	 the	 Ministry	 of	 Agriculture,	
Forestry	 and	 Food)	 was	 used	 to	 conduct	 the	 analyses	 with	 and	
without	forested	area.

3.3 Modelling
We	 based	 our	 modelling	 on	 an	 advanced	 machine	 learning	

framework	 of	 deep	 learning.	 Deep	 learning	 models	 can	 solve	
many	 different	 tasks	 in	 processing	 visual	 and	 auditory	 data	 by	
adapting	the	architecture	of	the	model	and	training	it	with	a	given	
collection	of	training	data.	The	main	advantage	of	deep	learning	
methods	 is	 that	 they	 mostly	 operate	 directly	 on	 the	 raw	 input	
and	are	able	 to	 learn	autonomously	 to	 extract	 relevant	 features	
from	a	 large	amount	of	data	that	can	be	used	to	achieve	the	set	
goals	 (Sarker,	 2021).	 Considering	 the	 nature	 of	 the	 input	 data	
(rasterised	 Lidar	 DEM)	 and	 the	 terraced	 landscapes	 (diverse	
landforms	 with	 a	 repetitive	 structure),	 we	 based	 our	 study	 on	
semantic	 segmentation	models.	These	models	accept	a	 region	of	
spatially	 connected	 inputs	 (e.g.	 a	 rectangular	 image	 patch)	 and	
predict	a	class	for	each	unit,	 i.e.	pixel.	Specifically,	we	based	our	
model	on	the	U-Net	architecture,	which	was	first	used	for	medical	
image	analysis	 (Ronneberger	et	al.,	2015),	but	has	subsequently	
been	utilised	extensively	 in	other	 segmentation	domains	as	well	
(Stringer	 et	 al.,	 2021).	 The	 U-Net	 architecture	 is	 widely	 used	
due	 to	 its	 relative	 simplicity.	 It	 is	 based	 on	 the	 idea	 of	 a	 fully-
convolutional	 combination	 of	 an	 encoder	 and	 a	 decoder.	 The	
skip	connections	 (connections	that	bypass	one	or	more	 layers	 in	
a	neural	network;	He	et	al.,	2016)	between	corresponding	layers	
of	both	units	improve	the	accuracy	of	the	resulting	segmentation.	
Our	model	architecture	is	shown	in	Fig.	3.

Based	 on	 preliminary	 experiments	 on	 a	 smaller	 dataset,	 we	
reduced	the	number	of	filters	in	individual	layers	and	reduced	the	
number	of	free	parameters	by	25%	in	comparison	to	the	original	
architecture	(Ronneberger	et	al.,	2015).	The	change	was	done	to	
promote	 generalisation	 and	 prevent	 overfitting	 to	 the	 training	
data.	The	reason	for	this	is	that	reduced	models	are	forced	to	use	
their	parameters	more	efficiently	and	tend	to	find	solutions	that	
generalise	better	 to	new	data.	Of	 course,	 there	 is	a	 limit	 to	 this	
phenomenon,	as	a	model	that	is	too	small	may	not	learn	to	solve	
a	complex	problem	at	all.	We	also	took	great	care	to	represent	the	
terrain	elevation	data	in	such	a	way	that	small	elevation	changes	
would	 be	 noticeable.	 Instead	 of	 using	 the	 elevation	 directly,	 we	
provided	 the	model	with	partial	derivatives	over	X	and	Y	of	 the	
elevation	raster.	These	two	derivatives	were	computed	using	the	
Sobel	operator.	Together,	the	derivatives	can	be	viewed	as	a	different	
representation	 of	 the	 local	 slope	 (magnitude	 of	 the	 combined	
derivatives)	and	aspect	 (angle	of	 the	combined	derivatives).	The	
reasoning	for	using	derivatives	instead	of	absolute	elevation	is	to	
have	the	input	values	distributed	over	a	similar	interval	regardless	
of	the	location	in	the	raster.	This	is	an	important	requirement	for	
successful	training	of	deep	models.

The	 model	 was	 implemented	 using	 the	 PyTorch	 framework	
(Paszke	et	al.,	2019)	and	learned	from	randomly	initialised	weights	
using	the	Adam	optimiser	(Kingma	&	Ba,	2014)	with	a	 learning	
rate	of	0.001.	The	batch	size	was	set	to	20	samples	of	572	×	572	
pixels.	During	learning,	the	process	was	monitored	by	observing	
the	model	 performance	 on	 a	 validation	 set	 to	 detect	 overfitting	
and	 determine	 whether	 further	 learning	 was	 still	 sensible.	 We	
experimented	with	different	 loss	 functions	and	 found	that	 (soft)	
Dice	loss	(Dice,	1945)	was	best	suited	for	our	use	case.	This	type	
of	loss	is	robust	to	unbalanced	data	(significantly	fewer	cultivated	
terraces	 than	 areas	 that	 do	 not	 contain	 them).	The	 final	model	
was	trained	on	a	single	NVIDIA	Nvidia	Titan	X	(Pascal)	GPU	for	
about	3	hours	(40,000	steps).

Due	 to	 the	 size	 of	 the	 raster,	 patch-based	 processing	 was	
required.	 In	 the	 training	 phase,	 we	 randomly	 sampled	 batches	
of	 20	 patches	 from	 the	 allocated	 training	 area.	 An	 additional	
condition	 was	 set	 for	 the	 sampling	 procedure:	 A	 selected	 patch	
had	to	contain	at	least	1%	of	the	terraced	area	(from	the	terraces	
register).	This	constraint	served	two	purposes:	a)	 it	ensured	the	
numerical	stability	of	the	loss	function	in	the	presence	of	highly	
unbalanced	data;	and	b)	since	manual	interpretations	and	mapping	
for	the	register	might	have	missed	some	cultivated	terraces	(e.g.	
in	densely	vegetated	areas),	we	used	this	 technique	to	 implicitly	

Fig. 3: Schematic representation of our segmentation model architecture
Source: authors’ conceptualisation
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avoid areas without terraces (e.g. mountains, flat areas) or areas 
where incomplete mapping might be present (e.g. forested areas). 
In the assessment phase, the raster was processed patch by patch 
in a scan-line algorithm. We also adjusted the padding to mitigate 
edge artefacts when joining individual patches back together.

The assessment of the model during and after the training 
phase was challenging due to inconsistencies in the labels 
used for training and the sensitivity of the classical overlap-
based performance measures, frequently used when evaluating 
segmentation models. The assessment was therefore based 
on a mixture of validation on a larger subset reference data to 
determine overfitting and establish stopping criterion. The final 
test of the trained model was done on a smaller set of curated 
regions, not seen during the training. These regions were the 
only part of the data that was manually re-labelled (mapped) by 
the authors of this study using DEM and orthophoto references. 
The test data (test set) was used to establish an objective noise-
free quantitative performance of the model and to observe how 
robust the model is to training noise. The selected quantitative 
measures for validation included accuracy, precision, recall, F1 
score, and Jaccard index (Jaccard, 1912; Hicks et al., 2022). These 
measures have been frequently used in spatial analyses (e.g. 
Fisher et al., 2018; Abdi, 2020; Tang & Painho, 2023) and are all 
derived from the confusion matrix, but highlight different aspects 
of performance. The related equations are:

where TP denotes true positive pixels (correctly recognised as 
terraces), TN true negative (correctly recognised as not terraces), 
FP false positive (incorrectly recognised as terraces) and FN false 
negative (terraces, but not recognised).

Our model was trained in the region of southwestern Slovenia, 
shown in Fig. 4 (2,776.1 km2; 13.7% of the country). The region was 
divided into chessboard-like patterns as training (73.8%), validation 
(25.3%), and testing sets (0.9%). The size of each rectangle was 
2048 × 2048 pixels. One pixel corresponded to 1 m2. The main 
property of the small test set was that it was manually re-labelled 
(mapped) using Lidar hillshade data and visually validated.

3.4 Application to the wider area and its evaluation

3.4.1 Overlapping

After obtaining the final model, which was validated and tested, 
we applied the model to the entire country (20,271 km2). This 
allowed us to further assess its capabilities.

The evaluation consisted of two steps. By overlapping the 
terraces register and the computer-recognised terraces, we 
created a cross-tabulation and calculated the Jaccard Index, recall, 
precision (see 3.3 for the equations), as well as the kappa index. 
The kappa index is calculated by (Dettori & Norvell, 2020):

Fig. 4: Map of the area of the modelling phase (southwestern Slovenia) with a hillshade relief as the background
Notes: Left: the region was divided into training (blue), validation (green), and testing (red) sets. The yellow line denotes the country border. 
Right: the same visualisation, but with a focus on the terraced regions.
Source: authors’ elaboration
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These analyses were also carried out with a comparison of the 
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An additional visual evaluation of the layer of recognised terraces 
was done by checking the shaded relief, which is commonly used 
for geomorphological features. It is based on a DEM that can be 
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illuminated under different conditions so as not to miss shapes 
oriented at the same angle as the illumination (Chandler et 
al., 2018). In this way, we were able to estimate examples of terraces 
that were not recognised or were recognised falsely (see Fig. 9). 
This step is crucial for further approaches to cope with recognition 
processes, as the training set may not have been complete and this 
was the first example of the application of deep learning methods to 
the entire territory of Slovenia. In order to perform a country-wide 
evaluation of the resulting layer, two samplings were conducted. 
First, we divided the country into a grid of 1 km2 squares. Then, we 
randomly selected 0.5% of all the squares (118 in total) to perform 
a visual evaluation. In addition, 0.5% of the squares (64 in total) 
with the lowest Jaccard index were selected for an additional visual 
evaluation, focusing on the areas with the least overlap between the 
terraces register and the computer recognised terraces. As some 
terraces covered with forest had not been fully mapped by Kladnik 
et al. (2016b), the analysis of the recognition success was done only 
for the areas outside the forests.

4. Results
The results are presented in two parts: first, in the scope of the 

classical machine learning process of model building, where the 
performance is assessed on test splits. Second, we evaluated the 
application of the model to the novel data outside the training area 
(application to the entire country) and summarised the results 
quantitatively as well as qualitatively.

4.1 Evaluation of the trained model
The model was first assessed on the test split of the southwestern 

Slovenia region (marked as five red squares in Fig. 4). The terraces 
in these five regions were newly digitised on the basis of hillshade 
relief. This binary mask layer of the testing terraces was then 
compared with the terraces recognised by the deep learning model 
and with the terraces register (Kladnik et al., 2016b). The results 
are summarised in Table 1. It is evident that the original terraces 
register (by Kladnik et al., 2016b) has some differences from the 
testing set of terraces obtained by observing the Lidar hillshade 
data. Our trained U-Net model outperforms this original terraces 
register. This indicates that the training procedure is robust to 
noisy inputs (due to missing or misplaced reference labels). This 
is especially true for weighted measures that are less sensitive to 
imbalanced datasets, i.e. the Jaccard index and the F1 score.

We also observed the discrepancy in the precision and recall 
scores indicating that the layer of the terraces register by Kladnik 
et al. (2016b) is more conservative, probably due to the fact that 
some densely forested areas were not taken into account, while 
the deep learning model does not have this bias, which leads to 
better recall.

4.2 Application to the entire country
The final model was applied to the entire country of Slovenia. 

Note that the only reference we had in this case was the terraces 
register by Kladnik et al. (2016b). Besides computing the 
overall comparison that provided some insights into the model’s 
performance, we also conducted an in-depth analysis of the 
discrepancies according to landscape types and land use categories 
(section 4.2.1) as well as a detailed qualitative comparison of 
selected areas (3.2.2). As already mentioned, some of the analysis 
in this part was performed for areas outside forests.

4.2.1 Confusion matrix and measures of success

After applying the model to the entire country, we prepared 
a confusion matrix (Tab. 2) and calculated several indicators of 
success rate to assess the model’s capability in general (including 
all areas) and for non-forested areas only (Tab. 3). We noticed 
that most of the indices were similar. The highest difference was 
observed between the accuracy rates. The higher value comes from 
the analysis of all the areas, which could be expected since the 
majority of the area is non-terraced.

The Jaccard index for terraces recognition outside forests with 
our deep learning model was 0.13, the Kappa index was 0.22, the 
overall accuracy was 0.85, the recall was 0.78, and the precision 
was 0.16. We see that the overall accuracy is high, but this is still 
the result of a large proportion of actual non-terraced areas. The 
proportion of true terraces detected is just over three quarters, 
and the predictive power is low.

Both terraces layers, i.e. the terraces register (by Kladnik 
et al., 2016b) and the deep learning recognition of our study, 
showed a higher percentage of terraces in the western and eastern 
part of Slovenia. We calculated the percentage of terraced areas 
outside forests in a 1 km2 grid for terraces register and for the 
terraces recognised by deep learning, respectively (Figs. 5 and 6).

The differences in terraces distribution across Slovenia (Fig. 5 
and Fig. 6) indicated that there might be differences in landscape 
settings (appropriateness and needs) for terracing across the 
country. After comparing different Slovenian natural landscape 
types (Perko et al., 2021; Tab. 4), it is clear that the highest success 
rate for areas outside forests is associated with the Mediterranean 
part of Slovenia (Mediterranean hills and Mediterranean 
plateaus), which is located in western Slovenia where the 
training labels were taken. These two types are followed by the 
Pannonian hills (on the eastern edge of the country) and two 
Dinaric landscape types (Dinaric plateaus and Dinaric lowlands). 
The Mediterranean landscapes and the Pannonian landscapes are 
also the most terraced regions in Slovenia, according to Kladnik 
et al. (2016b).

Tab. 1: Quantitative results for the testing split. First row: comparison of the deep learning recognised terraces with the testing set of manually 
mapped terraces on a Lidar-based hillshade relief; second row: comparison of terraces register (by Kladnik et al., 2016b) with the testing set of 
manually mapped terraces on a Lidar-based hillshade relief
Source: authors’ calculations

Accuracy Precision Recall Jaccard F1

Deep learning recognition (U-Net) 0.885 0.749 0.877 0.678 0.808

Terraces register by Kladnik et al., 2016b 0.850 0.784 0.633 0.539 0.701

Terraces register by Kladnik et al. (2016b)
Sum

positive negative

Deep learning recognition positive 225.07 km2 (2.69%) 1,172.10 km2 (13.98%) 1397.17 km2

Deep learning recognition negative 63.14 km2 (0.75%) 6,921.93 km2 (83.00%) 6985.97 km2

Sum 288.21 km2 8,094.03 km2 100%

Tab. 2: Confusion matrices for non-forested areas in the entire country
Source: authors’ calculations
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All areas (including forests) Non-forested areas only

accuracy 0.93 0.85
Jaccard index 0.13 0.13
Kappa 0.24 0.22
recall 0.75 0.78
precision 0.16 0.16

Tab. 3: Comparison of basic success rates
Source: authors’ calculations

Fig. 5: Area of terraces defined in terraces register outside forests (shown as a percentage of 1 km2)
Source: authors’ calculations

Fig. 6: Area of deep learning recognised terraces outside forests (shown as a percentage of 1 km2)
Source: authors’ calculations

Landscape type Jaccard index

Mediterranean hills 0.44
Mediterranean plateaus 0.22
Pannonian hills 0.12
Dinaric lowlands 0.11
Dinaric plateaus 0.11
Alpine hills 0.08
Alpine plains 0.05
Pannonian plains 0.03
Alpine high mountains 0.03

Tab. 4: The Jaccard index for terraces recognition according to the 
Slovenian landscape types (according to Perko et al., 2021)
Source: authors’ calculations
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Fig. 7: Jaccard index for 1 km2 (for non-forested areas). Regions in western and eastern parts of the country have the highest level of success rate
Source: authors’ calculations

Fig. 8: Regularly maintained and well-visible terraces in Ljutomer-Ormož Hills (upper left; photo: Elena Odareeva, Adobe Stock) and Gorica 
Hills (upper right; photo: Marcin Juch, Adobe Stock). Less distinct terraces in Dinaric plateaus were used as fields in the past, but nowadays, 
they are covered with grass (bottom left; photo: Rok Ciglič) or sparse trees (bottom right; photo: Matevž Lenarčič). The photos have been used 
with authors’ permission.

There are also differences in success rates outside the forests 
at a more detailed level between different regions of the country. 
We calculated the Jaccard index for 1 km2 squares and found 
that most regions with well-preserved terraces, e.g. the Gorica 
Hills (Goriška brda) in the Mediterranean Hills in the west and 
Ljutomer-Ormož Hills (Ljutomersko-Ormoške gorice) in the 
Pannonian Hills in the east, had the highest success rate (Fig. 7). 
The terraces in the Gorica Hills are well maintained due to their 
importance in the regional economy. The area has intensive fruit 
and vine growing due to favourable warm Mediterranean climatic 

conditions. With the introduction of agricultural machinery 
in the past, the terraces became wider and more uniform. The 
slopes (banks) became more stable and noticeable (Kladnik et 
al., 2016b). Similarly, some parts of the Pannonian Hills have an 
intensive fruit and vine growing production due to a continental 
climate and low altitude above sea level. In this area, terraces are 
located in a thermal belt at higher relative altitudes. Therefore, 
the terraces are clearly visible for human interpretation of the 
aerial imagery or the hillshade relief. Obviously, they are also 
easily recognisable to the deep learning method. On the other 
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hand, karst areas of Dinaric Alps are less favourable for farming 
in general due to high altitudes, lower temperatures, a thin 
soil layer, and the absence of surface water (Ciglič et al., 2013). 
Therefore, cultivated terraces and agricultural activity were 
generally quickly abandoned in the last decades and are therefore 
less visible in the landscape (Kladnik et al., 2016b). These areas 
have less distinct terraces now (e.g. gentle terraces in Dinaric 
regions covered with grass or sparse vegetation; Fig. 8).

We also examined the relationship between terraces and 
different types of land use (Tab. 5). We defined eight land use 
categories based on 2012 land use data. The results are presented 
for the terraces recognised by deep learning and the terraces 
register respectively. We repeated the analysis with forested 
areas excluded, as we assumed that terraces from the register 
are included in a lower percentage than those defined by the deep 
learning method.

Most of the terraces from the register are covered by grasslands, 
followed by those with vineyards. If we compare these results with 
the terraces recognised by deep learning, we see that these terraces 
are also most often covered by grassland, but there is a strong 
difference in second place with arable land instead of vineyards. In 
both cases, the third largest area is represented by forests.

4.2.2 Visual evaluation

Based on 118 randomly selected 1 km2 squares and 64 randomly 
selected 1 km2 squares with the lowest value of the Jaccard index, 
we gathered some observations on the success of deep learning 
recognition. Some areas were falsely recognised as terraces. This 
is because of various artificial shapes or features that look similar 
to agricultural terraces. For example, a road on a slope could be 
recognised as a terrace. Such a pattern with some smaller single 
terraces or single steeper slopes nearby can give an even stronger 
impression of a terraced area (Fig. 9A). Larger infrastructure 
elements, such as railway lines with embankments (Fig. 9B) 
or roads, especially those with repeated patterns of winding 
roads (Fig. 9C), can also be identified as terraces. In addition to 
these larger infrastructure elements, smaller paths on slopes, 
especially if they occur close together (e.g. due to grazing), can 
also be recognised as terraces. Small elevation differences due 
to different cropping structures (which influence the Lidar 
penetration to the ground) or different cultivation stages in the 
fields can be recognised as terraces (Fig. 9D). In some places, even 
barren agricultural land (fields) on the plain can be recognised as 
terraces (Fig. 9E), characterised by a repeating pattern of small 
‘ridges’ and ‘valleys’. The general landscape structure (mosaic) 
also influences the recognition algorithm, which recognises larger 
areas of terraces than they actually are. Some foothills of slopes 
with only one (large and distinct) edge were falsely recognised as 
larger terrace areas (Fig. 9F). On the other hand, some terraces 
are less pronounced and are crossed by non-terraced (but rough) 
relief, so that larger areas are identified as terraced.

Fig. 9: Examples of falsely recognised terraces
Source: authors’ calculations

Share of land use 
on terraces from the register [%]

Share of land use 
on deep learning recognized terraces [%]

forest included without forest forest included without forest

Arable land 7.5 8.4 11.9 12.9
Vineyards 19.1 21.3 6.4 7.0
Other permanent crops 9.3 10.4 5.0 5.4
Grasslands 44.0 49.0 60.1 65.1
Other farm areas 7.5 8.4 4.4 4.7
Forest 10.4 – 7.8 –
Built-up area 2.1 2.3 4.3 4.6
Other 0.0 0.0 0.1 0.2
Total 100.0 100.0 100.0 100.0

Tab. 5: Relationship between terraces and different types of land use
Source: authors’ calculations

After the visual examination of our results, it seems that deep 
learning recognition overestimated the number of terraced areas 
in the case of Slovenia. On the other hand, some terraces were not 
recognised by the deep learning method. There are cases where 
certain terraces or parts of them were not recognised by the model, 
which raises the need for further tuning the model or improving 
the training labels.

5. Discussion
In his study, Berčič (2016) predicted that recognition using 

machine learning could not be far off. Past studies (e.g. Cao 
et al., 2021; Glušič et al., 2021; Lu et al., 2023; Zhao et al., 2021) 
and our analysis support this prediction.

A comparison with some recent studies with machine learning 
approaches puts our work in a broader context. Cao et al. (2021) 
used several multispectral Landsat satellite images, GlobeLand30, 
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Google Earth imagery, and a SRTM digital elevation model to 
create a classification algorithm (random forest classifier) for 
terraces in China. The overall accuracies were 94.7% and 88.4% 
(after additional visual inspection) and the Kappa indices were 
about 0.71. The analysis was performed at 30 m resolution. 
Zhao et al. (2021) used a deep learning-based U-net approach 
and a spectral angle mapper approach for three study areas in 
China. Terraces were recognised based on Google Earth imagery 
and refined by DEM (produced by drone imagery with 1 m 
resolution). The first method provided an overall accuracy of 87 
and 90%, the second 40 to 49%. Lu et al. (2023) used Google Maps 
satellite imagery and the U-net algorithm for terraces recognition; 
afterwards, digital elevation model, GlobeLand30, and vegetation 
correction data were used for corrections. Their overall accuracy 
was between 96.4 and 98.4% (depending on the processing stage). 
In contrast to these studies, our study was based solely on the Lidar 
DEM and existing terraces register (by Kladnik et al., 2016b), 
which was not entirely accurate. No satellite or aerial imagery 
was used in our process, as well as no post-processing using expert 
knowledge. We were interested in defining terraces even in heavily 
vegetated areas where terraces cannot be observed without Lidar 
technology as well as in studying the limits of using deep learning 
alone for the task. This means our method was a novel approach 
and these first results were consequently relatively poor. As in the 
case of the Chinese examples, Slovenian terraces recognition might 
still benefit from the inclusion of additional data, e.g. Landsat 
or Sentinel imagery or other commercial satellite imagery with 
a higher resolution, but the main goal was to test deep learning 
capabilities exclusively on DEM data due to the rather high forest 
cover in Slovenia (according to the Slovenia Forest Service, 58% of 
the country is covered with forests).

Some natural and artificial phenomena are similar to cultivated 
terraces and make the recognition more difficult. Since terraced 
landscapes are located in places where apparent patterns of two or 
more terraced surfaces appear (Berčič, 2016), it was not surprising 
that we encountered natural or other artificial terrace-like forms 
during the (mis)recognition. Natural terraces appear as step-
like landforms resembling terraces, formed by natural processes 
(Kladnik et al., 2017a; see also Del Val et al., 2015; Ferk, 2016). In 
our case, some specific features were recognised as terraces (e.g. 
foothills). In contrast, there were many more examples of falsely 
recognised terraces associated with anthropogenic elements, such 
as roads and railway lines (see Fig. 9). We noticed that some slopes 
with road cuts can be recognised as terraces. According to a formal 
description, these can also be considered terraces, but they are 
not cultivated. The span of such a ‘terrace’ varies and there is no 
clear repeating pattern. Therefore, the solution could be to define 
the span of terraces more strictly and the minimum number of 
terraced surfaces in one terraced area. By including remote sensing 
imagery, roads can be excluded based on the spectral response for 
certain surface materials (asphalt, gravel).

Terraces generally share similar spatial texture characteristics 
(Zhao et al., 2021), whereas natural landscape types influence 
the shape and distribution of cultivated terraces to some extent 
(Berčič, 2016). Our analysis included different landscape types 
across Slovenia, where different geomorphic processes as well as 
anthropogenic influences are present (Zorn et al., 2020). These 
processes have left a characteristic imprint on the landscape, 
which means that cultivated terraces may differ from one area 
to another and therefore different recognition issues may arise 
regarding the success of modelling. In our case (Tab. 5, Fig. 7), 
the highest Jaccard index was observed in the Mediterranean hills 
(in the west) and the Pannonian hills (in the east), where terraces 
with vineyards are common (Ažman Momirski, 2019). The reasons 
for the higher success rate in these regions could be that the 
terraces in these areas have the most pronounced shape and are 
well maintained and less overgrown. Therefore, they are clearly 

visible for human and deep learning recognition. In such areas, 
Lidar scanning of the ground is also more detailed with a higher 
density of ground points. Namely, data collection is easier due to 
plants (vines) growing in a row with some empty space all around, 
so the Lidar scanning can easily reach the ground. Based on the 
geometric characteristics of the terraces (which are usually more 
than 2 m wide; Drobnjak, 1989), we consider the 1m Lidar data 
to be sufficient and not the reason for the discrepancies. Terraces 
are most often covered with grasslands (as shown in Tab. 5). This 
is not surprising, because land abandonment and overgrowth of 
agricultural areas (fields) is very common in Slovenian peripheral 
areas (Gabrovec & Kumer, 2019), especially in the Dinaric Alps. 
The higher share of terraces recognised by deep learning is also 
related to arable land, which might also be the result of some 
misrecognised areas (see 4.2.2).

The advantage of deep learning is the modularity of the model 
architectures, which can be quickly adapted to new tasks. The 
convolutional neural networks we have used are very well suited 
for processing spatial data and remote sensing (Yuan et al., 2021), 
as they can efficiently model high-order dependencies in the local 
area. On the other hand, deep models require a large amount of 
data. In remote sensing applications, the sheer quantity is usually 
not a problem, but ensuring sufficient quality often is. Some 
features of interest may be missing in the training data. Moreover, 
labelled features rarely follow the exact boundary in the underlying 
raster, as human annotators are influenced by various factors and 
are seldom completely focused on their visual interpretation. Some 
objects are also complex to digitise (Van Coillie et al., 2014). Still, 
the main source of noise in our case is the absence of labels of 
overgrown terraces (Kladnik et al., 2016b; Glušič et al., 2021). As 
we observed in our case, the training procedure of deep models 
that considers several samples in a single step is surprisingly 
robust. This has been demonstrated by comparing our model’s 
predictions to the testing labels (see 4.1).

There are more ways to further mitigate the problem of noise by 
considering additional data sources and domain knowledge. Since 
there are many features with terraces-like shape in the Lidar 
DEM data (e.g. winding roads, river terraces), the rate of falsely 
classified terraced areas could be reduced by including aerial 
orthophotos or other multispectral remote sensing images. Lu 
et al. (2023), refined the recognition results, obtained using deep 
learning on optical imagery using slope information and exclude 
areas with low levels of slope (e.g. less than 2°). The analysis of 
optical remote sensing images (e.g. aerial or satellite multispectral 
images) could help us in our case to exclude certain non-vegetated 
areas (such as roads covered with asphalt or stone quarries), 
but this approach solely cannot adequately improve capturing 
terraced areas with indistinct terrace banks and abandoned, 
overgrown cultivated terraces (Kladnik et al., 2016b). To provide 
solid morphological information, using Lidar data is therefore 
unavoidable in such cases and other data sources may only provide 
auxiliary information.

Looking at the specific failure cases of our model (see Fig. 9) 
we acknowledge the fact that the diversity of terraces and their 
similarity to other landscape features should be additionally 
investigated. A clear division between similar, terraces-like 
features could be promoted during training using similar landscape 
features. Such features might include a winding road, a railway 
line, or a road embankment, etc. and could be obtained from 
different sources (e.g. land use). The model may also lose sensitivity 
to some landscape properties due to our data encoding using DEM 
derivatives. This choice allows the model to focus on small changes 
in the landscape but makes it difficult to reconstruct coarser 
properties. The addition of a less detailed (generalized) DEM (e.g. 
averaged Lidar DEM) may help to provide more information about 
the general slope of the area and to exclude flat areas, where, for 
example, terraces-like pattern can be seen in the ploughed fields.
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It is important to remember that our study only evaluates the 
capabilities of a deep learning model and does not consider manual 
pre- or post-processing, which can upgrade our approach. Despite 
the limitations of the presented model, we believe that computer 
analyses of digital elevation models are needed for successful 
construction and maintenance of terraces registers, especially 
in countries like Slovenia, where most of the land is covered by 
forests. In such scenarios, fieldwork is limited by potentially poor 
accessibility as well as time and financial constraints (Berčič, 2016). 
A more robust model, stemming from our work, could quickly and 
cost-effectively map abandoned and overgrown terraces to promote 
their potential revitalisation (Sakellariou et al., 2021).

Beyond terraces, other relief features could be tested for 
recognition possibilities with deep learning methods, for example 
dolines and collapsed dolines (e.g. Ciglič et al., 2022; Mihevc 
& Mihevc, 2021), denuded caves (Grlj & Grigillo, 2014), fluvial 
terraces (Wei et al., 2017), landslides (Verbovšek et al., 2019), alluvial 
fans (Norini et al., 2016), dunes (Mohamed & Verstraeten, 2012), 
and glacially reshaped landforms (Chandler et al., 2018). Despite 
the increasing availability of objective methods, manual mapping 
is still used to refine extracted features, e.g. fluvial terraces 
(Gardner et al., 2020). Deep learning is still underutilised 
in several geographical sub-fields, e.g. geomorphology and 
geomorphometry. Rare examples of the use of automated analysis 
include the analysis for categorising different rock types (Patel 
& Chatterjee, 2016), recognising dolines (Mihevc & Mihevc, 2021), 
and other geomorphic features (Maxwell et al., 2023).

6. Conclusions
Terraced landscapes are the result of human adaptation to 

nature, mainly for the purposes of improving the conditions for 
agriculture. Nowadays, many terraces are being abandoned, but 
if the need were to arise for their revitalisation (e.g. due to food 
shortages), it is important to know the locations of existing and 
abandoned terraces. In this work, we tested the possibilities for 
recognising terraces using a U-Net deep learning architecture and 
Lidar DEM. Unlike past studies, we did not use satellite or aerial 
multispectral imagery for the deep learning process. We found that 
the recognition of cultivated terraces solely with the Lidar DEM is 
possible. During the testing phase, the method showed robustness 
to the input training data, which is encouraging for further studies 
and improvement. Comparing the modelled layer and the layer of 
cultivated terraces, the register showed an overall accuracy of 85%, 
but the kappa index was only 0.22. A detailed inspection showed 
that the recognition was most successful in areas with pronounced 
terraces (e.g. the Mediterranean parts of Slovenia). Our results 
did not contain any post-processing and are generally not yet 
suitable for direct application, as there were quite a number of 
errors. However, our analysis was able to highlight a number 
of challenges (potential false recognition issues) that need to be 
considered when defining training datasets.
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