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Abstract
Cultivated terraces are phenomena that have been protected in some areas for both their cultural heritage and food 
production purposes. Some terraced areas are disappearing but could be revitalised. To this end, recognition techniques 
need to be developed and terrace registers need to be established. The goal of this study was to recognise terraces using deep 
learning based on Lidar DEM. Lidar data is a valuable resource in countries with overgrown terraces. The U-net model 
training was conducted using data from the Slovenian terraces register for southwestern Slovenia and was subsequently 
applied to the entire country. We then analysed the agreement between the terraces register and the terraces recognised by 
deep learning. The overall accuracy of the model was 85%; however, the kappa index was only 0.22. The success rate was 
higher in some regions. Our results achieved lower accuracy compared to studies from China, where similar techniques 
were used but which incorporated satellite imagery, DEM, as well as land use data. This study was the first attempt at 
deep learning terrace recognition based solely on high-resolution DEM, highlighting examples of false terrace recognition 
that may be related to natural or other artificial terrace-like features.
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1. Introduction
People build terraces into slopes to gain agricultural land, 

reduce soil erosion, reduce runoff, retain soil moisture, improve 
productivity, and provide gravity irrigation (Kladnik et al.,  2005; 
Cicinelli et al., 2021; Slámová et al., 2015; Varotto et al., 2019; Zhao 
et al., 2021). A terrace comprises a flat or slightly sloping surface of 
varying width that is cultivated and a terrace slope (bank) of varying 
height (Ažman Momirski,  2008; Kladnik et  al.,  2016b). Lu et al. 
(2023, p. 2) defined terraces as “agricultural land with strip or wavy 
sections built on slopes greater than 2° along the contour direction”. 
These cultivated landscapes can be defined as a complex landscape 
system influenced by various natural and socio-geographical 
factors. Cultivated terraces (also cultural or anthropogenic terraces) 
were originally often intended for agriculture and can be described 
in most cases as agricultural terraces. They also have invaluable 
cultural, historical, ecological, aesthetic, touristic, and scientific 
value (Camera et al.,  2018; Djuma et al.,  2020; Ferro-Vázquez et 
al., 2017; Terkenli et al., 2019; Zoumides et al., 2017).

Cultivated terraces vary according to the period of origin, natural 
conditions, form, land use, ownership, etc. Many countries feature 
cultivated terraces (Berčič & Ažman-Momirski,  2020; Cicinelli 
et al., 2021; Jinwen & Yuanyan, 2012; Kladnik et al., 2017a; Slámová 
et al., 2017; Varotto et al., 2019). They are quite significant in some 

areas, where entire stretches of land are designated as terraced 
landscapes, while they may be only visible upon closer inspection 
elsewhere (Kladnik et al., 2016b). Terraces can be active, inactive, 
or a combination of both (Berčič,  2016). Terraced landscapes are 
disappearing in places due to overgrowth (see also Gabrovec 
& Kumer, 2019; Moreno-de-las-Heras et al., 2019) or inappropriate 
management; however, they have been recognised as an important 
landscape element that needs to be protected and considered for 
revitalisation. Still, no clear criteria for identifying terraces have 
been developed and the management system is still fragmented in 
some areas, for example, in Slovenia (Kladnik et al., 2017b). Land 
abandonment and ageing of the owners are some of the reasons for 
the poor maintenance of terraces (Tarolli et al., 2019).

In order to efficiently combat the degradation of terraces in 
general, precise registers are needed that show the location and 
status of cultivated terraces. Maps are important for understanding 
the landscape (Gašperič,  2023); the overview of the locations of 
cultivated terraces is the basis for analyses of their ecological, 
social, and economic importance (Ferrarese et al., 2019) and can 
also indicate past agricultural land (Berčič, 2016).

Current data on terraced landscapes are not comprehensive. 
In the case of Slovenia, some cultivated terraces overgrown 
by vegetation were not recorded in the photo interpretation, 
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topographic map analysis, and fieldwork in the earlier research by 
Kladnik et al. (2016b). Therefore, an important part of overgrown 
terraces might be missing and the most appropriate mapping 
methods using different datasets are still being developed. 
A review of past studies (see the following section for details) has 
revealed some gaps and opportunities for research:

•	 The deep learning recognition of cultivated terraces based 
solely on a digital elevation model has never been applied and 
tested for its robustness;

•	 Information on what kind of false recognition (false positives) 
and non-recognition (false negatives) can occur is still missing 
for different regions of the world, including the territory of 
Slovenia; and

•	 Recognition approaches based on digital elevation models 
(DEM) can be useful (and often the only possible method) in 
vegetated areas and countries where visual satellite or aerial 
imagery is less suitable for relief feature recognition.

To this end, our study focused on determining the optimal 
methodological approach for cultivated terraces recognition. The 
main objective of this study is to develop and test deep learning 
methods capable of automatically recognising cultivated terraces 
based solely on a high-resolution (1 m) digital elevation model. The 
study also examines the modelling results, points out potential 
problems, and provides suggestions on how to improve the training 
labels and modelling settings for further deep learning recognitions. 
Such approaches have not been used in Slovenia or anywhere else 
before, meaning the expected results are hard to predict.

It should be noted that since the current register of cultivated 
terraces in Slovenia is incomplete in some places where terraces 
are overgrown by dense vegetation, this also provides a real-
life scenario to test the robustness of the deep learning to noisy 
training labels. This is an important computer-science research 
question for many recognition scenarios where accurate labels 
are hard to obtain. In addition, the results of the analysis can 
deliver important country-wide information on the location of 
unregistered terraces.

2. Theoretical background
In general, a number of international projects (Ferrarese 

et al., 2019; Scaramellini & Varotto, 2008) and studies on terraces 
have been done from different perspectives (Brown et al.,  2020; 
Camera et al., 2018; D. Chen et al., 2021; Cicinelli et al., 2021; Deng 
et al.,  2021; Varotto et al.,  2019; Zoumides et  al.,  2017). To raise 
awareness about the importance of terraces, the Honghe Declaration 
was adopted worldwide in 2010 (Jinwen & Yuanyan, 2012). There 
have been many conservation efforts, analyses, and registration of 
terraces around the world, e.g. in Peru (Tillmann et al., 2020), China 
(Cao et al.,  2020, 2021; Zhao et al.,  2021), Japan (Kuroda,  2020), 
Italy (Pijl et al., 2021), and Slovenia (Kladnik et al., 2016b, 2017a). 
In  2010, the International Terraced Landscapes Alliance (ITLA) 
was established. Civil initiatives seek to recognise, protect, and 
conserve terraced landscapes, and some terraced landscapes have 
been inscribed on the World Heritage List (see Ažman Momirski 
& Berčič, 2016; Kladnik et al., 2017a).

Terrace recognition using satellite imagery was performed by 
Zhang et al. (2017). Their analysis used the Fourier transformation, 
edge characteristics, and a template matching algorithm. Sun et al. 
(2019) used satellite imagery to create a classification of terraced 
landscapes by using segmentation and k-nearest neighbour 
classification. Diaz-Varela et al. (2014) used a digital surface 
model and several spectral layers created from a UAV survey to 
perform an object-based image analysis and classification. As 
early as 2008, Ninfo (2008) used Lidar data to perform a terrace 
analysis using geoinformation methods to detect edges on a slope. 
The usefulness of Lidar data visualisations and analyses has been 

addressed more frequently recently (e.g. Alberti,  2020; Ferrarese 
et al.,  2019; Romero-Martín et al.,  2020; Tillmann et al.,  2020). 
In Italy, a curvature analysis of the Lidar digital elevation model 
(DEM) and other DEM-derived variables have been used to detect 
terrace edges (Ferrarese et al., 2019). A similar approach was used 
by Cosner and Tecilla (2020) and Stralla et al. (2018). Ferrarese 
et al. (2019) also used other approaches, for example, visualising 
DEM data with manual mapping of terraces. Godone et al. (2018) 
determined terraces from Lidar data using a  method based on 
the height and slope analysis technique developed by Scott and 
Pinter (2003) when studying coastal terraces. Berčič (2016) used 
orthophoto imagery, land use layer, and relief slope (generated based 
on LIDAR) to visually interpret terraces. Satellite imagery and 
DEM were used to detect terraces with a random forest classifier 
(Cao et al.,  2021). Visual interpretation is still a very common 
approach (Alberti, 2020; Ažman Momirski & Berčič, 2018; Romero-
Martín et al.,  2020; Tillmann et al.,  2020). In Slovenia, terraces 
have been documented based on a systematic visual examination 
of orthophotos, topographic maps, and fieldwork (Kladnik 
et al., 2016a; Kladnik et al., 2016b; Šmid Hribar et al., 2017).

In the last two decades, more and more deep learning methods 
have been used to solve various scientific problems. They have 
proven to be applicable in cases where classical models have 
not been able to solve the problem (Alavi et al.,  2016). Image 
analysis using computer vision methods (e.g. convolutional neural 
networks) is a relatively new interdisciplinary field that is growing 
in popularity, especially for the analysis of visual spectrum images 
(Buscombe & Ritchie, 2018; Redmon et al., 2016; Ren et al., 2015). 
These methods have also been used in medicine (Ronneberger 
et al.,  2015) and remote sensing imagery (Chen et al.,  2019; 
Wurm et al., 2019). In terms of the type of structures (cultivated 
terraces) we want to recognise in our study, they are mostly areas 
of different shapes and sizes with certain textural features. For 
this type of data, semantic segmentation models have been utilised 
with great success. Recently, studies on terraces recognition with 
deep learning based on satellite imagery have been conducted for 
loess plateaus in China (Lu et al., 2023; Zhao et al., 2021). Lu et al. 
(2023) and Zhao et al. (2021) introduced deep learning methods for 
recognising terraces using satellite imagery and optimising their 
results with the help of predefined masking (e.g. to eliminate flat 
areas with DEM or non-agricultural areas with a land use map). 
A preliminary study on the recognition of terraces with deep 
learning based on Lidar data was also conducted for southwestern 
Slovenia by Glušič et al. (2021).

3. Methods and data
The study modelled cultivated terraces based on a) an existing 

Slovenian register of cultivated terraces (Kladnik et al.,  2016b); 
and b) a Lidar digital elevation model (provided by the Slovenian 
Environment Agency; Triglav Čekada & Bric, 2015). The modelling 
was conducted in four steps (see Fig.  1). First, we prepared the 
data of DEM and the current terraces register as described in 
section 3.2. Then, we tested a deep model on a subset of the data 
(this part was further divided into training, validation, and testing 
stages) as described in section  3.3. In the last step, described 
in 3.4, we applied the model to the entire country and evaluated 
the country-wide results in two phases. In the first phase, we 
quantitatively examined the input and result layers; in the second 
phase, we systematically examined the result layer qualitatively 
(visually) and analysed discrepancies.

3.1 Research area and basic characteristics of cultivated terraces
Slovenia (Fig.  2) is a diverse country, even at the European 

level, as different landscape regions intertwine here, namely the 
Alps, the Pannonian Basin, the Mediterranean, and the Dinaric 
Alps (Ciglič & Perko, 2013). Almost two-thirds of the country is 
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characterised by hills and mountains. More than 90% of the area 
is covered by loose sediments and sedimentary rocks; the greatest 
part of the country is composed of limestone. The country has 
a sub-Mediterranean climate in the southwest and a temperate 
continental climate in the central and eastern part and a montane 
climate in the northwest and north. The country has abundant 
water sources and forests cover approximately two thirds of the 
area; the widest spread form of natural vegetation are beech forests. 
Slovenia has just over 2 million inhabitants (Perko et al., 2020).

Terraced landscapes in Slovenia have been analysed in the past 
in the project ‘Terraced Landscapes in Slovenia as Cultural Values’ 
(Kladnik et al., 2016a; Kladnik et al., 2016b, 2017a; Šmid Hribar 
et al., 2017) as well as in other studies (Ažman Momirski, 2008, 2019; 
Ažman Momirski & Berčič,  2016; Berčič,  2016), constituting an 
important basis for further research with new methods.

The construction of terraces in Slovenia can be divided into two 
parts. Traditionally, terraces have been built in the Mediterranean 
parts of the country at least since the time of the Roman Empire 
for the cultivation of olive trees and vineyards. Until the 19th 

century, the terraced slopes were built with stones, but from 
then onwards, newer slopes were built without stones and were 
overgrown with grass. Land use also changed in different eras. 
Before the appearance of phylloxera, the terraces had a mixed 

land use with combined vineyards and fields on the same terrace. 
Later, the fields were replaced by vineyards and orchards planted 
on the banks of the terraces. With the intensification of agriculture 
in Yugoslavia, terracing also became more common in other parts 
of the country. While some of the old terraces on unfavourable 
slopes were abandoned, mostly in the period from 1963–1990 due 
to the depopulation of the countryside, many new terraces were 
created with the help of machines and are used almost exclusively 
for viticulture (Titl, 1965; Kladnik et al., 2016b, 2017a).

According to Kladnik et al. (2016b), terraces in Slovenia occur 
from 0 m to almost 1,200 m above sea level, with the majority 
of them located in Mediterranean parts of the country. They are 
most commonly found at a height between 200 m and 300 m 
on flysch rocks on slopes between 15.1% and 30%. The width 
of the terraces can range from around 2 metres on steep slopes 
to 50 metres on flatter terrain, while their length can vary from 
around 10 metres to several hundred metres in newer terraces 
(Drobnjak, 1989).

3.2 Input data
The model for the recognition of terraces was created by using 

the DEM and vector layer of the terraces register. The DEM was 
available with a resolution of 1 m and provided by the Slovenian 

Fig. 1: Overview of the study workflow
Source: authors’ conceptualisation

Fig. 2: Slovenian landscape types and location of Slovenia
Source: authors’ elaboration based on Perko et al. (2021)
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Environment Agency. The DEM layer is based on the Lidar 
point cloud with a ground return point density of at least 0.5 
points / m2 and at least 15 cm of vertical precision (Triglav Čekada 
& Bric,  2015). The vector layer of terraces register was created 
by manually digitising orthophotos and topographic maps, and 
through fieldwork done by the Research Centre of the Slovenian 
Academy of Sciences and Arts (Kladnik et al., 2016b). The layers of 
orthophotos (0.25 m and 0.5 m resolution) and various topographic 
maps were provided by the Surveying and Mapping Authority. 
In the evaluation process, a generalised land-use information 
(provided by the Ministry of Agriculture, Forestry and Food) were 
used for analysis of relationships between terraces and land-use. 
The generalised categories for land use were defined on the basis 
of vegetation height and land use; the combining of land use 
categories was done according to Gabrovec and Kumer  (2019). 
A  forest mask (also provided by the Ministry of Agriculture, 
Forestry and Food) was used to conduct the analyses with and 
without forested area.

3.3 Modelling
We based our modelling on an advanced machine learning 

framework of deep learning. Deep learning models can solve 
many different tasks in processing visual and auditory data by 
adapting the architecture of the model and training it with a given 
collection of training data. The main advantage of deep learning 
methods is that they mostly operate directly on the raw input 
and are able to learn autonomously to extract relevant features 
from a large amount of data that can be used to achieve the set 
goals (Sarker,  2021). Considering the nature of the input data 
(rasterised Lidar DEM) and the terraced landscapes (diverse 
landforms with a repetitive structure), we based our study on 
semantic segmentation models. These models accept a region of 
spatially connected inputs (e.g. a rectangular image patch) and 
predict a class for each unit, i.e. pixel. Specifically, we based our 
model on the U-Net architecture, which was first used for medical 
image analysis (Ronneberger et al., 2015), but has subsequently 
been utilised extensively in other segmentation domains as well 
(Stringer et al.,  2021). The U-Net architecture is widely used 
due to its relative simplicity. It is based on the idea of a fully-
convolutional combination of an encoder and a decoder. The 
skip connections (connections that bypass one or more layers in 
a neural network; He et al., 2016) between corresponding layers 
of both units improve the accuracy of the resulting segmentation. 
Our model architecture is shown in Fig. 3.

Based on preliminary experiments on a smaller dataset, we 
reduced the number of filters in individual layers and reduced the 
number of free parameters by 25% in comparison to the original 
architecture (Ronneberger et al., 2015). The change was done to 
promote generalisation and prevent overfitting to the training 
data. The reason for this is that reduced models are forced to use 
their parameters more efficiently and tend to find solutions that 
generalise better to new data. Of course, there is a limit to this 
phenomenon, as a model that is too small may not learn to solve 
a complex problem at all. We also took great care to represent the 
terrain elevation data in such a way that small elevation changes 
would be noticeable. Instead of using the elevation directly, we 
provided the model with partial derivatives over X and Y of the 
elevation raster. These two derivatives were computed using the 
Sobel operator. Together, the derivatives can be viewed as a different 
representation of the local slope (magnitude of the combined 
derivatives) and aspect (angle of the combined derivatives). The 
reasoning for using derivatives instead of absolute elevation is to 
have the input values distributed over a similar interval regardless 
of the location in the raster. This is an important requirement for 
successful training of deep models.

The model was implemented using the PyTorch framework 
(Paszke et al., 2019) and learned from randomly initialised weights 
using the Adam optimiser (Kingma & Ba, 2014) with a learning 
rate of 0.001. The batch size was set to 20 samples of 572 × 572 
pixels. During learning, the process was monitored by observing 
the model performance on a validation set to detect overfitting 
and determine whether further learning was still sensible. We 
experimented with different loss functions and found that (soft) 
Dice loss (Dice, 1945) was best suited for our use case. This type 
of loss is robust to unbalanced data (significantly fewer cultivated 
terraces than areas that do not contain them). The final model 
was trained on a single NVIDIA Nvidia Titan X (Pascal) GPU for 
about 3 hours (40,000 steps).

Due to the size of the raster, patch-based processing was 
required. In the training phase, we randomly sampled batches 
of  20 patches from the allocated training area. An additional 
condition was set for the sampling procedure: A selected patch 
had to contain at least 1% of the terraced area (from the terraces 
register). This constraint served two purposes: a) it ensured the 
numerical stability of the loss function in the presence of highly 
unbalanced data; and b) since manual interpretations and mapping 
for the register might have missed some cultivated terraces (e.g. 
in densely vegetated areas), we used this technique to implicitly 

Fig. 3: Schematic representation of our segmentation model architecture
Source: authors’ conceptualisation
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avoid areas without terraces (e.g. mountains, flat areas) or areas 
where incomplete mapping might be present (e.g. forested areas). 
In the assessment phase, the raster was processed patch by patch 
in a scan-line algorithm. We also adjusted the padding to mitigate 
edge artefacts when joining individual patches back together.

The assessment of the model during and after the training 
phase was challenging due to inconsistencies in the labels 
used for training and the sensitivity of the classical overlap-
based performance measures, frequently used when evaluating 
segmentation models. The assessment was therefore based 
on a mixture of validation on a larger subset reference data to 
determine overfitting and establish stopping criterion. The final 
test of the trained model was done on a smaller set of curated 
regions, not seen during the training. These regions were the 
only part of the data that was manually re-labelled (mapped) by 
the authors of this study using DEM and orthophoto references. 
The test data (test set) was used to establish an objective noise-
free quantitative performance of the model and to observe how 
robust the model is to training noise. The selected quantitative 
measures for validation included accuracy, precision, recall, F1 
score, and Jaccard index (Jaccard, 1912; Hicks et al., 2022). These 
measures have been frequently used in spatial analyses (e.g. 
Fisher et al., 2018; Abdi, 2020; Tang & Painho, 2023) and are all 
derived from the confusion matrix, but highlight different aspects 
of performance. The related equations are:

where TP denotes true positive pixels (correctly recognised as 
terraces), TN true negative (correctly recognised as not terraces), 
FP false positive (incorrectly recognised as terraces) and FN false 
negative (terraces, but not recognised).

Our model was trained in the region of southwestern Slovenia, 
shown in Fig. 4 (2,776.1 km2; 13.7% of the country). The region was 
divided into chessboard-like patterns as training (73.8%), validation 
(25.3%), and testing sets (0.9%). The size of each rectangle was 
2048 × 2048 pixels. One pixel corresponded to 1 m2. The main 
property of the small test set was that it was manually re-labelled 
(mapped) using Lidar hillshade data and visually validated.

3.4 Application to the wider area and its evaluation

3.4.1 Overlapping

After obtaining the final model, which was validated and tested, 
we applied the model to the entire country (20,271 km2). This 
allowed us to further assess its capabilities.

The evaluation consisted of two steps. By overlapping the 
terraces register and the computer-recognised terraces, we 
created a cross-tabulation and calculated the Jaccard Index, recall, 
precision (see 3.3 for the equations), as well as the kappa index. 
The kappa index is calculated by (Dettori & Norvell, 2020):

Fig. 4: Map of the area of the modelling phase (southwestern Slovenia) with a hillshade relief as the background
Notes: Left: the region was divided into training (blue), validation (green), and testing (red) sets. The yellow line denotes the country border. 
Right: the same visualisation, but with a focus on the terraced regions.
Source: authors’ elaboration
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illuminated under different conditions so as not to miss shapes 
oriented at the same angle as the illumination (Chandler et 
al., 2018). In this way, we were able to estimate examples of terraces 
that were not recognised or were recognised falsely (see Fig.  9). 
This step is crucial for further approaches to cope with recognition 
processes, as the training set may not have been complete and this 
was the first example of the application of deep learning methods to 
the entire territory of Slovenia. In order to perform a country-wide 
evaluation of the resulting layer, two samplings were conducted. 
First, we divided the country into a grid of 1 km2 squares. Then, we 
randomly selected 0.5% of all the squares (118 in total) to perform 
a visual evaluation. In addition, 0.5% of the squares (64  in total) 
with the lowest Jaccard index were selected for an additional visual 
evaluation, focusing on the areas with the least overlap between the 
terraces register and the computer recognised terraces. As some 
terraces covered with forest had not been fully mapped by Kladnik 
et al. (2016b), the analysis of the recognition success was done only 
for the areas outside the forests.

4. Results
The results are presented in two parts: first, in the scope of the 

classical machine learning process of model building, where the 
performance is assessed on test splits. Second, we evaluated the 
application of the model to the novel data outside the training area 
(application to the entire country) and summarised the results 
quantitatively as well as qualitatively.

4.1 Evaluation of the trained model
The model was first assessed on the test split of the southwestern 

Slovenia region (marked as five red squares in Fig. 4). The terraces 
in these five regions were newly digitised on the basis of hillshade 
relief. This binary mask layer of the testing terraces was then 
compared with the terraces recognised by the deep learning model 
and with the terraces register (Kladnik et al., 2016b). The results 
are summarised in Table 1. It is evident that the original terraces 
register (by Kladnik et al., 2016b) has some differences from the 
testing set of terraces obtained by observing the Lidar hillshade 
data. Our trained U-Net model outperforms this original terraces 
register. This indicates that the training procedure is robust to 
noisy inputs (due to missing or misplaced reference labels). This 
is especially true for weighted measures that are less sensitive to 
imbalanced datasets, i.e. the Jaccard index and the F1 score.

We also observed the discrepancy in the precision and recall 
scores indicating that the layer of the terraces register by Kladnik 
et al. (2016b) is more conservative, probably due to the fact that 
some densely forested areas were not taken into account, while 
the deep learning model does not have this bias, which leads to 
better recall.

4.2 Application to the entire country
The final model was applied to the entire country of Slovenia. 

Note that the only reference we had in this case was the terraces 
register by Kladnik et al.  (2016b). Besides computing the 
overall comparison that provided some insights into the model’s 
performance, we also conducted an in-depth analysis of the 
discrepancies according to landscape types and land use categories 
(section  4.2.1) as well as a detailed qualitative comparison of 
selected areas (3.2.2). As already mentioned, some of the analysis 
in this part was performed for areas outside forests.

4.2.1 Confusion matrix and measures of success

After applying the model to the entire country, we prepared 
a confusion matrix (Tab.  2) and calculated several indicators of 
success rate to assess the model’s capability in general (including 
all areas) and for non-forested areas only (Tab.  3). We noticed 
that most of the indices were similar. The highest difference was 
observed between the accuracy rates. The higher value comes from 
the analysis of all the areas, which could be expected since the 
majority of the area is non-terraced.

The Jaccard index for terraces recognition outside forests with 
our deep learning model was 0.13, the Kappa index was 0.22, the 
overall accuracy was 0.85, the recall was 0.78, and the precision 
was 0.16. We see that the overall accuracy is high, but this is still 
the result of a large proportion of actual non-terraced areas. The 
proportion of true terraces detected is just over three quarters, 
and the predictive power is low.

Both terraces layers, i.e. the terraces register (by Kladnik 
et  al.,  2016b) and the deep learning recognition of our study, 
showed a higher percentage of terraces in the western and eastern 
part of Slovenia. We calculated the percentage of terraced areas 
outside forests in a  1  km2 grid for terraces register and for the 
terraces recognised by deep learning, respectively (Figs. 5 and 6).

The differences in terraces distribution across Slovenia (Fig. 5 
and Fig. 6) indicated that there might be differences in landscape 
settings (appropriateness and needs) for terracing across the 
country. After comparing different Slovenian natural landscape 
types (Perko et al., 2021; Tab. 4), it is clear that the highest success 
rate for areas outside forests is associated with the Mediterranean 
part of Slovenia (Mediterranean hills and Mediterranean 
plateaus), which is located in western Slovenia where the 
training labels were taken. These two types are followed by the 
Pannonian hills (on the eastern edge of the country) and two 
Dinaric landscape types (Dinaric plateaus and Dinaric lowlands). 
The Mediterranean landscapes and the Pannonian landscapes are 
also the most terraced regions in Slovenia, according to Kladnik 
et al. (2016b).

Tab. 1: Quantitative results for the testing split. First row: comparison of the deep learning recognised terraces with the testing set of manually 
mapped terraces on a Lidar-based hillshade relief; second row: comparison of terraces register (by Kladnik et al., 2016b) with the testing set of 
manually mapped terraces on a Lidar-based hillshade relief
Source: authors’ calculations

Accuracy Precision Recall Jaccard F1

Deep learning recognition (U-Net) 0.885 0.749 0.877 0.678 0.808

Terraces register by Kladnik et al., 2016b 0.850 0.784 0.633 0.539 0.701

Terraces register by Kladnik et al. (2016b)
Sum

positive negative

Deep learning recognition positive 225.07 km2 (2.69%) 1,172.10 km2 (13.98%) 1397.17 km2

Deep learning recognition negative 63.14 km2 (0.75%) 6,921.93 km2 (83.00%) 6985.97 km2

Sum 288.21 km2 8,094.03 km2 100%

Tab. 2: Confusion matrices for non-forested areas in the entire country
Source: authors’ calculations



Moravian geographical Reports	 2024, 32(1), 66–78

72

All areas (including forests) Non-forested areas only

accuracy 0.93 0.85
Jaccard index 0.13 0.13
Kappa 0.24 0.22
recall 0.75 0.78
precision 0.16 0.16

Tab. 3: Comparison of basic success rates
Source: authors’ calculations

Fig. 5: Area of terraces defined in terraces register outside forests (shown as a percentage of 1 km2)
Source: authors’ calculations

Fig. 6: Area of deep learning recognised terraces outside forests (shown as a percentage of 1 km2)
Source: authors’ calculations

Landscape type Jaccard index

Mediterranean hills 0.44
Mediterranean plateaus 0.22
Pannonian hills 0.12
Dinaric lowlands 0.11
Dinaric plateaus 0.11
Alpine hills 0.08
Alpine plains 0.05
Pannonian plains 0.03
Alpine high mountains 0.03

Tab. 4: The Jaccard index for terraces recognition according to the 
Slovenian landscape types (according to Perko et al., 2021)
Source: authors’ calculations
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Fig. 7: Jaccard index for 1 km2 (for non-forested areas). Regions in western and eastern parts of the country have the highest level of success rate
Source: authors’ calculations

Fig. 8: Regularly maintained and well-visible terraces in Ljutomer-Ormož Hills (upper left; photo: Elena Odareeva, Adobe Stock) and Gorica 
Hills (upper right; photo: Marcin Juch, Adobe Stock). Less distinct terraces in Dinaric plateaus were used as fields in the past, but nowadays, 
they are covered with grass (bottom left; photo: Rok Ciglič) or sparse trees (bottom right; photo: Matevž Lenarčič). The photos have been used 
with authors’ permission.

There are also differences in success rates outside the forests 
at a more detailed level between different regions of the country. 
We calculated the Jaccard index for 1  km2 squares and found 
that most regions with well-preserved terraces, e.g. the Gorica 
Hills (Goriška brda) in the Mediterranean Hills in the west and 
Ljutomer-Ormož Hills (Ljutomersko-Ormoške gorice) in the 
Pannonian Hills in the east, had the highest success rate (Fig. 7). 
The terraces in the Gorica Hills are well maintained due to their 
importance in the regional economy. The area has intensive fruit 
and vine growing due to favourable warm Mediterranean climatic 

conditions. With the introduction of agricultural machinery 
in the past, the terraces became wider and more uniform. The 
slopes (banks) became more stable and noticeable (Kladnik et 
al., 2016b). Similarly, some parts of the Pannonian Hills have an 
intensive fruit and vine growing production due to a continental 
climate and low altitude above sea level. In this area, terraces are 
located in a thermal belt at higher relative altitudes. Therefore, 
the terraces are clearly visible for human interpretation of the 
aerial imagery or the hillshade relief. Obviously, they are also 
easily recognisable to the deep learning method. On the other 
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hand, karst areas of Dinaric Alps are less favourable for farming 
in general due to high altitudes, lower temperatures, a thin 
soil layer, and the absence of surface water (Ciglič et al., 2013). 
Therefore, cultivated terraces and agricultural activity were 
generally quickly abandoned in the last decades and are therefore 
less visible in the landscape (Kladnik et al., 2016b). These areas 
have less distinct terraces now (e.g. gentle terraces in Dinaric 
regions covered with grass or sparse vegetation; Fig. 8).

We also examined the relationship between terraces and 
different types of land use (Tab.  5). We defined eight land use 
categories based on 2012 land use data. The results are presented 
for the terraces recognised by deep learning and the terraces 
register respectively. We repeated the analysis with forested 
areas excluded, as we assumed that terraces from the register 
are included in a lower percentage than those defined by the deep 
learning method.

Most of the terraces from the register are covered by grasslands, 
followed by those with vineyards. If we compare these results with 
the terraces recognised by deep learning, we see that these terraces 
are also most often covered by grassland, but there is a strong 
difference in second place with arable land instead of vineyards. In 
both cases, the third largest area is represented by forests.

4.2.2 Visual evaluation

Based on 118 randomly selected 1 km2 squares and 64 randomly 
selected 1 km2 squares with the lowest value of the Jaccard index, 
we gathered some observations on the success of deep learning 
recognition. Some areas were falsely recognised as terraces. This 
is because of various artificial shapes or features that look similar 
to agricultural terraces. For example, a road on a slope could be 
recognised as a terrace. Such a pattern with some smaller single 
terraces or single steeper slopes nearby can give an even stronger 
impression of a terraced area (Fig.  9A). Larger infrastructure 
elements, such as railway lines with embankments (Fig.  9B) 
or roads, especially those with repeated patterns of winding 
roads (Fig. 9C), can also be identified as terraces. In addition to 
these larger infrastructure elements, smaller paths on slopes, 
especially if they occur close together (e.g. due to grazing), can 
also be recognised as terraces. Small elevation differences due 
to different cropping structures (which influence the Lidar 
penetration to the ground) or different cultivation stages in the 
fields can be recognised as terraces (Fig. 9D). In some places, even 
barren agricultural land (fields) on the plain can be recognised as 
terraces (Fig. 9E), characterised by a repeating pattern of small 
‘ridges’ and ‘valleys’. The general landscape structure (mosaic) 
also influences the recognition algorithm, which recognises larger 
areas of terraces than they actually are. Some foothills of slopes 
with only one (large and distinct) edge were falsely recognised as 
larger terrace areas (Fig. 9F). On the other hand, some terraces 
are less pronounced and are crossed by non-terraced (but rough) 
relief, so that larger areas are identified as terraced.

Fig. 9: Examples of falsely recognised terraces
Source: authors’ calculations

Share of land use 
on terraces from the register [%]

Share of land use 
on deep learning recognized terraces [%]

forest included without forest forest included without forest

Arable land 7.5 8.4 11.9 12.9
Vineyards 19.1 21.3 6.4 7.0
Other permanent crops 9.3 10.4 5.0 5.4
Grasslands 44.0 49.0 60.1 65.1
Other farm areas 7.5 8.4 4.4 4.7
Forest 10.4 – 7.8 –
Built-up area 2.1 2.3 4.3 4.6
Other 0.0 0.0 0.1 0.2
Total 100.0 100.0 100.0 100.0

Tab. 5: Relationship between terraces and different types of land use
Source: authors’ calculations

After the visual examination of our results, it seems that deep 
learning recognition overestimated the number of terraced areas 
in the case of Slovenia. On the other hand, some terraces were not 
recognised by the deep learning method. There are cases where 
certain terraces or parts of them were not recognised by the model, 
which raises the need for further tuning the model or improving 
the training labels.

5. Discussion
In his study, Berčič  (2016) predicted that recognition using 

machine learning could not be far off. Past studies (e.g. Cao 
et al., 2021; Glušič et al., 2021; Lu et al., 2023; Zhao et al., 2021) 
and our analysis support this prediction.

A comparison with some recent studies with machine learning 
approaches puts our work in a broader context. Cao et al. (2021) 
used several multispectral Landsat satellite images, GlobeLand30, 
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Google Earth imagery, and a SRTM digital elevation model to 
create a classification algorithm (random forest classifier) for 
terraces in China. The overall accuracies were 94.7% and 88.4% 
(after additional visual inspection) and the Kappa indices were 
about  0.71. The analysis was performed at 30  m resolution. 
Zhao et  al. (2021) used a deep learning-based U-net approach 
and a  spectral angle mapper approach for three study areas in 
China. Terraces were recognised based on Google Earth imagery 
and refined by DEM (produced by drone imagery with 1  m 
resolution). The first method provided an overall accuracy of 87 
and 90%, the second 40 to 49%. Lu et al. (2023) used Google Maps 
satellite imagery and the U-net algorithm for terraces recognition; 
afterwards, digital elevation model, GlobeLand30, and vegetation 
correction data were used for corrections. Their overall accuracy 
was between 96.4 and 98.4% (depending on the processing stage). 
In contrast to these studies, our study was based solely on the Lidar 
DEM and existing terraces register (by Kladnik et al.,  2016b), 
which was not entirely accurate. No satellite or aerial imagery 
was used in our process, as well as no post-processing using expert 
knowledge. We were interested in defining terraces even in heavily 
vegetated areas where terraces cannot be observed without Lidar 
technology as well as in studying the limits of using deep learning 
alone for the task. This means our method was a novel approach 
and these first results were consequently relatively poor. As in the 
case of the Chinese examples, Slovenian terraces recognition might 
still benefit from the inclusion of additional data, e.g. Landsat 
or Sentinel imagery or other commercial satellite imagery with 
a higher resolution, but the main goal was to test deep learning 
capabilities exclusively on DEM data due to the rather high forest 
cover in Slovenia (according to the Slovenia Forest Service, 58% of 
the country is covered with forests).

Some natural and artificial phenomena are similar to cultivated 
terraces and make the recognition more difficult. Since terraced 
landscapes are located in places where apparent patterns of two or 
more terraced surfaces appear (Berčič, 2016), it was not surprising 
that we encountered natural or other artificial terrace-like forms 
during the (mis)recognition. Natural terraces appear as step-
like landforms resembling terraces, formed by natural processes 
(Kladnik et al., 2017a; see also Del Val et al., 2015; Ferk, 2016). In 
our case, some specific features were recognised as terraces (e.g. 
foothills). In contrast, there were many more examples of falsely 
recognised terraces associated with anthropogenic elements, such 
as roads and railway lines (see Fig. 9). We noticed that some slopes 
with road cuts can be recognised as terraces. According to a formal 
description, these can also be considered terraces, but they are 
not cultivated. The span of such a ‘terrace’ varies and there is no 
clear repeating pattern. Therefore, the solution could be to define 
the span of terraces more strictly and the minimum number of 
terraced surfaces in one terraced area. By including remote sensing 
imagery, roads can be excluded based on the spectral response for 
certain surface materials (asphalt, gravel).

Terraces generally share similar spatial texture characteristics 
(Zhao et al.,  2021), whereas natural landscape types influence 
the shape and distribution of cultivated terraces to some extent 
(Berčič,  2016). Our analysis included different landscape types 
across Slovenia, where different geomorphic processes as well as 
anthropogenic influences are present (Zorn et al.,  2020). These 
processes have left a characteristic imprint on the landscape, 
which means that cultivated terraces may differ from one area 
to another and therefore different recognition issues may arise 
regarding the success of modelling. In our case (Tab.  5, Fig.  7), 
the highest Jaccard index was observed in the Mediterranean hills 
(in the west) and the Pannonian hills (in the east), where terraces 
with vineyards are common (Ažman Momirski, 2019). The reasons 
for the higher success rate in these regions could be that the 
terraces in these areas have the most pronounced shape and are 
well maintained and less overgrown. Therefore, they are clearly 

visible for human and deep learning recognition. In such areas, 
Lidar scanning of the ground is also more detailed with a higher 
density of ground points. Namely, data collection is easier due to 
plants (vines) growing in a row with some empty space all around, 
so the Lidar scanning can easily reach the ground. Based on the 
geometric characteristics of the terraces (which are usually more 
than 2 m wide; Drobnjak, 1989), we consider the 1m Lidar data 
to be sufficient and not the reason for the discrepancies. Terraces 
are most often covered with grasslands (as shown in Tab. 5). This 
is not surprising, because land abandonment and overgrowth of 
agricultural areas (fields) is very common in Slovenian peripheral 
areas (Gabrovec & Kumer, 2019), especially in the Dinaric Alps. 
The higher share of terraces recognised by deep learning is also 
related to arable land, which might also be the result of some 
misrecognised areas (see 4.2.2).

The advantage of deep learning is the modularity of the model 
architectures, which can be quickly adapted to new tasks. The 
convolutional neural networks we have used are very well suited 
for processing spatial data and remote sensing (Yuan et al., 2021), 
as they can efficiently model high-order dependencies in the local 
area. On the other hand, deep models require a large amount of 
data. In remote sensing applications, the sheer quantity is usually 
not a problem, but ensuring sufficient quality often is. Some 
features of interest may be missing in the training data. Moreover, 
labelled features rarely follow the exact boundary in the underlying 
raster, as human annotators are influenced by various factors and 
are seldom completely focused on their visual interpretation. Some 
objects are also complex to digitise (Van Coillie et al., 2014). Still, 
the main source of noise in our case is the absence of labels of 
overgrown terraces (Kladnik et al., 2016b; Glušič et al., 2021). As 
we observed in our case, the training procedure of deep models 
that considers several samples in a single step is surprisingly 
robust. This has been demonstrated by comparing our model’s 
predictions to the testing labels (see 4.1).

There are more ways to further mitigate the problem of noise by 
considering additional data sources and domain knowledge. Since 
there are many features with terraces-like shape in the Lidar 
DEM data (e.g. winding roads, river terraces), the rate of falsely 
classified terraced areas could be reduced by including aerial 
orthophotos or other multispectral remote sensing images. Lu 
et al. (2023), refined the recognition results, obtained using deep 
learning on optical imagery using slope information and exclude 
areas with low levels of slope (e.g. less than 2°). The analysis of 
optical remote sensing images (e.g. aerial or satellite multispectral 
images) could help us in our case to exclude certain non-vegetated 
areas (such as roads covered with asphalt or stone quarries), 
but this approach solely cannot adequately improve capturing 
terraced areas with indistinct terrace banks and abandoned, 
overgrown cultivated terraces (Kladnik et al., 2016b). To provide 
solid morphological information, using Lidar data is therefore 
unavoidable in such cases and other data sources may only provide 
auxiliary information.

Looking at the specific failure cases of our model (see Fig.  9) 
we acknowledge the fact that the diversity of terraces and their 
similarity to other landscape features should be additionally 
investigated. A clear division between similar, terraces-like 
features could be promoted during training using similar landscape 
features. Such features might include a winding road, a railway 
line, or a road embankment, etc. and could be obtained from 
different sources (e.g. land use). The model may also lose sensitivity 
to some landscape properties due to our data encoding using DEM 
derivatives. This choice allows the model to focus on small changes 
in the landscape but makes it difficult to reconstruct coarser 
properties. The addition of a less detailed (generalized) DEM (e.g. 
averaged Lidar DEM) may help to provide more information about 
the general slope of the area and to exclude flat areas, where, for 
example, terraces-like pattern can be seen in the ploughed fields.
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It is important to remember that our study only evaluates the 
capabilities of a deep learning model and does not consider manual 
pre- or post-processing, which can upgrade our approach. Despite 
the limitations of the presented model, we believe that computer 
analyses of digital elevation models are needed for successful 
construction and maintenance of terraces registers, especially 
in countries like Slovenia, where most of the land is covered by 
forests. In such scenarios, fieldwork is limited by potentially poor 
accessibility as well as time and financial constraints (Berčič, 2016). 
A more robust model, stemming from our work, could quickly and 
cost-effectively map abandoned and overgrown terraces to promote 
their potential revitalisation (Sakellariou et al., 2021).

Beyond terraces, other relief features could be tested for 
recognition possibilities with deep learning methods, for example 
dolines and collapsed dolines (e.g. Ciglič et al.,  2022; Mihevc 
&  Mihevc,  2021), denuded caves (Grlj & Grigillo,  2014), fluvial 
terraces (Wei et al., 2017), landslides (Verbovšek et al., 2019), alluvial 
fans (Norini et al., 2016), dunes (Mohamed & Verstraeten, 2012), 
and glacially reshaped landforms (Chandler et al., 2018). Despite 
the increasing availability of objective methods, manual mapping 
is still used to refine extracted features, e.g. fluvial terraces 
(Gardner et al., 2020). Deep learning is still underutilised 
in several geographical sub-fields, e.g. geomorphology and 
geomorphometry. Rare examples of the use of automated analysis 
include the analysis for categorising different rock types (Patel 
& Chatterjee, 2016), recognising dolines (Mihevc & Mihevc, 2021), 
and other geomorphic features (Maxwell et al., 2023).

6. Conclusions
Terraced landscapes are the result of human adaptation to 

nature, mainly for the purposes of improving the conditions for 
agriculture. Nowadays, many terraces are being abandoned, but 
if the need were to arise for their revitalisation (e.g. due to food 
shortages), it is important to know the locations of existing and 
abandoned terraces. In this work, we tested the possibilities for 
recognising terraces using a U-Net deep learning architecture and 
Lidar DEM. Unlike past studies, we did not use satellite or aerial 
multispectral imagery for the deep learning process. We found that 
the recognition of cultivated terraces solely with the Lidar DEM is 
possible. During the testing phase, the method showed robustness 
to the input training data, which is encouraging for further studies 
and improvement. Comparing the modelled layer and the layer of 
cultivated terraces, the register showed an overall accuracy of 85%, 
but the kappa index was only 0.22. A detailed inspection showed 
that the recognition was most successful in areas with pronounced 
terraces (e.g. the Mediterranean parts of Slovenia). Our results 
did not contain any post-processing and are generally not yet 
suitable for direct application, as there were quite a number of 
errors. However, our analysis was able to highlight a  number 
of challenges (potential false recognition issues) that need to be 
considered when defining training datasets.
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